1
1
use crate :: coverageinfo:: ffi:: { Counter , CounterExpression , ExprKind } ;
2
2
3
3
use rustc_data_structures:: fx:: FxIndexSet ;
4
- use rustc_index:: { IndexSlice , IndexVec } ;
5
- use rustc_middle:: bug;
6
- use rustc_middle:: mir:: coverage:: {
7
- CodeRegion , CounterId , ExpressionId , MappedExpressionIndex , Op , Operand ,
8
- } ;
4
+ use rustc_index:: IndexVec ;
5
+ use rustc_middle:: mir:: coverage:: { CodeRegion , CounterId , ExpressionId , Op , Operand } ;
9
6
use rustc_middle:: ty:: Instance ;
10
7
use rustc_middle:: ty:: TyCtxt ;
11
8
@@ -199,8 +196,14 @@ impl<'tcx> FunctionCoverage<'tcx> {
199
196
self . instance
200
197
) ;
201
198
199
+ let counter_expressions = self . counter_expressions ( ) ;
200
+ // Expression IDs are indices into `self.expressions`, and on the LLVM
201
+ // side they will be treated as indices into `counter_expressions`, so
202
+ // the two vectors should correspond 1:1.
203
+ assert_eq ! ( self . expressions. len( ) , counter_expressions. len( ) ) ;
204
+
202
205
let counter_regions = self . counter_regions ( ) ;
203
- let ( counter_expressions , expression_regions) = self . expressions_with_regions ( ) ;
206
+ let expression_regions = self . expression_regions ( ) ;
204
207
let unreachable_regions = self . unreachable_regions ( ) ;
205
208
206
209
let counter_regions =
@@ -216,146 +219,50 @@ impl<'tcx> FunctionCoverage<'tcx> {
216
219
} )
217
220
}
218
221
219
- fn expressions_with_regions (
220
- & self ,
221
- ) -> ( Vec < CounterExpression > , impl Iterator < Item = ( Counter , & CodeRegion ) > ) {
222
- let mut counter_expressions = Vec :: with_capacity ( self . expressions . len ( ) ) ;
223
- let mut expression_regions = Vec :: with_capacity ( self . expressions . len ( ) ) ;
224
- let mut new_indexes = IndexVec :: from_elem_n ( None , self . expressions . len ( ) ) ;
225
-
226
- // This closure converts any `Expression` operand (`lhs` or `rhs` of the `Op::Add` or
227
- // `Op::Subtract` operation) into its native `llvm::coverage::Counter::CounterKind` type
228
- // and value.
229
- //
230
- // Expressions will be returned from this function in a sequential vector (array) of
231
- // `CounterExpression`, so the expression IDs must be mapped from their original,
232
- // potentially sparse set of indexes.
233
- //
234
- // An `Expression` as an operand will have already been encountered as an `Expression` with
235
- // operands, so its new_index will already have been generated (as a 1-up index value).
236
- // (If an `Expression` as an operand does not have a corresponding new_index, it was
237
- // probably optimized out, after the expression was injected into the MIR, so it will
238
- // get a `CounterKind::Zero` instead.)
239
- //
240
- // In other words, an `Expression`s at any given index can include other expressions as
241
- // operands, but expression operands can only come from the subset of expressions having
242
- // `expression_index`s lower than the referencing `Expression`. Therefore, it is
243
- // reasonable to look up the new index of an expression operand while the `new_indexes`
244
- // vector is only complete up to the current `ExpressionIndex`.
245
- type NewIndexes = IndexSlice < ExpressionId , Option < MappedExpressionIndex > > ;
246
- let id_to_counter = |new_indexes : & NewIndexes , operand : Operand | match operand {
247
- Operand :: Zero => Some ( Counter :: ZERO ) ,
248
- Operand :: Counter ( id) => Some ( Counter :: counter_value_reference ( id) ) ,
249
- Operand :: Expression ( id) => {
250
- self . expressions
251
- . get ( id)
252
- . expect ( "expression id is out of range" )
253
- . as_ref ( )
254
- // If an expression was optimized out, assume it would have produced a count
255
- // of zero. This ensures that expressions dependent on optimized-out
256
- // expressions are still valid.
257
- . map_or ( Some ( Counter :: ZERO ) , |_| new_indexes[ id] . map ( Counter :: expression) )
258
- }
259
- } ;
260
-
261
- for ( original_index, expression) in
262
- self . expressions . iter_enumerated ( ) . filter_map ( |( original_index, entry) | {
263
- // Option::map() will return None to filter out missing expressions. This may happen
264
- // if, for example, a MIR-instrumented expression is removed during an optimization.
265
- entry. as_ref ( ) . map ( |expression| ( original_index, expression) )
266
- } )
267
- {
268
- let optional_region = & expression. region ;
269
- let Expression { lhs, op, rhs, .. } = * expression;
222
+ /// Convert this function's coverage expression data into a form that can be
223
+ /// passed through FFI to LLVM.
224
+ fn counter_expressions ( & self ) -> Vec < CounterExpression > {
225
+ // We know that LLVM will optimize out any unused expressions before
226
+ // producing the final coverage map, so there's no need to do the same
227
+ // thing on the Rust side unless we're confident we can do much better.
228
+ // (See `CounterExpressionsMinimizer` in `CoverageMappingWriter.cpp`.)
270
229
271
- if let Some ( Some ( ( lhs_counter, mut rhs_counter) ) ) = id_to_counter ( & new_indexes, lhs)
272
- . map ( |lhs_counter| {
273
- id_to_counter ( & new_indexes, rhs) . map ( |rhs_counter| ( lhs_counter, rhs_counter) )
274
- } )
275
- {
276
- if lhs_counter. is_zero ( ) && op. is_subtract ( ) {
277
- // The left side of a subtraction was probably optimized out. As an example,
278
- // a branch condition might be evaluated as a constant expression, and the
279
- // branch could be removed, dropping unused counters in the process.
280
- //
281
- // Since counters are unsigned, we must assume the result of the expression
282
- // can be no more and no less than zero. An expression known to evaluate to zero
283
- // does not need to be added to the coverage map.
284
- //
285
- // Coverage test `loops_branches.rs` includes multiple variations of branches
286
- // based on constant conditional (literal `true` or `false`), and demonstrates
287
- // that the expected counts are still correct.
288
- debug ! (
289
- "Expression subtracts from zero (assume unreachable): \
290
- original_index={:?}, lhs={:?}, op={:?}, rhs={:?}, region={:?}",
291
- original_index, lhs, op, rhs, optional_region,
292
- ) ;
293
- rhs_counter = Counter :: ZERO ;
230
+ self . expressions
231
+ . iter ( )
232
+ . map ( |expression| match expression {
233
+ None => {
234
+ // This expression ID was allocated, but we never saw the
235
+ // actual expression, so it must have been optimized out.
236
+ // Replace it with a dummy expression, and let LLVM take
237
+ // care of omitting it from the expression list.
238
+ CounterExpression :: DUMMY
294
239
}
295
- debug_assert ! (
296
- lhs_counter. is_zero( )
297
- // Note: with `as usize` the ID _could_ overflow/wrap if `usize = u16`
298
- || ( ( lhs_counter. zero_based_id( ) as usize )
299
- <= usize :: max( self . counters. len( ) , self . expressions. len( ) ) ) ,
300
- "lhs id={} > both counters.len()={} and expressions.len()={}
301
- ({:?} {:?} {:?})" ,
302
- lhs_counter. zero_based_id( ) ,
303
- self . counters. len( ) ,
304
- self . expressions. len( ) ,
305
- lhs_counter,
306
- op,
307
- rhs_counter,
308
- ) ;
309
-
310
- debug_assert ! (
311
- rhs_counter. is_zero( )
312
- // Note: with `as usize` the ID _could_ overflow/wrap if `usize = u16`
313
- || ( ( rhs_counter. zero_based_id( ) as usize )
314
- <= usize :: max( self . counters. len( ) , self . expressions. len( ) ) ) ,
315
- "rhs id={} > both counters.len()={} and expressions.len()={}
316
- ({:?} {:?} {:?})" ,
317
- rhs_counter. zero_based_id( ) ,
318
- self . counters. len( ) ,
319
- self . expressions. len( ) ,
320
- lhs_counter,
321
- op,
322
- rhs_counter,
323
- ) ;
324
-
325
- // Both operands exist. `Expression` operands exist in `self.expressions` and have
326
- // been assigned a `new_index`.
327
- let mapped_expression_index =
328
- MappedExpressionIndex :: from ( counter_expressions. len ( ) ) ;
329
- let expression = CounterExpression :: new (
330
- lhs_counter,
331
- match op {
332
- Op :: Add => ExprKind :: Add ,
333
- Op :: Subtract => ExprKind :: Subtract ,
334
- } ,
335
- rhs_counter,
336
- ) ;
337
- debug ! (
338
- "Adding expression {:?} = {:?}, region: {:?}" ,
339
- mapped_expression_index, expression, optional_region
340
- ) ;
341
- counter_expressions. push ( expression) ;
342
- new_indexes[ original_index] = Some ( mapped_expression_index) ;
343
- if let Some ( region) = optional_region {
344
- expression_regions. push ( ( Counter :: expression ( mapped_expression_index) , region) ) ;
240
+ & Some ( Expression { lhs, op, rhs, .. } ) => {
241
+ // Convert the operands and operator as normal.
242
+ CounterExpression :: new (
243
+ Counter :: from_operand ( lhs) ,
244
+ match op {
245
+ Op :: Add => ExprKind :: Add ,
246
+ Op :: Subtract => ExprKind :: Subtract ,
247
+ } ,
248
+ Counter :: from_operand ( rhs) ,
249
+ )
345
250
}
346
- } else {
347
- bug ! (
348
- "expression has one or more missing operands \
349
- original_index={:?}, lhs={:?}, op={:?}, rhs={:?}, region={:?}",
350
- original_index,
351
- lhs,
352
- op,
353
- rhs,
354
- optional_region,
355
- ) ;
356
- }
357
- }
358
- ( counter_expressions, expression_regions. into_iter ( ) )
251
+ } )
252
+ . collect :: < Vec < _ > > ( )
253
+ }
254
+
255
+ fn expression_regions ( & self ) -> Vec < ( Counter , & CodeRegion ) > {
256
+ // Find all of the expression IDs that weren't optimized out AND have
257
+ // an attached code region, and return the corresponding mapping as a
258
+ // counter/region pair.
259
+ self . expressions
260
+ . iter_enumerated ( )
261
+ . filter_map ( |( id, expression) | {
262
+ let code_region = expression. as_ref ( ) ?. region . as_ref ( ) ?;
263
+ Some ( ( Counter :: expression ( id) , code_region) )
264
+ } )
265
+ . collect :: < Vec < _ > > ( )
359
266
}
360
267
361
268
fn unreachable_regions ( & self ) -> impl Iterator < Item = ( Counter , & CodeRegion ) > {
0 commit comments