-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathintrinsics-x86-gfni.rs
517 lines (437 loc) · 20.1 KB
/
intrinsics-x86-gfni.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
// We're testing x86 target specific features
//@only-target: x86_64 i686
//@compile-flags: -C target-feature=+gfni,+avx512f
// The constants in the tests below are just bit patterns. They should not
// be interpreted as integers; signedness does not make sense for them, but
// __mXXXi happens to be defined in terms of signed integers.
#![allow(overflowing_literals)]
#![feature(stdarch_x86_avx512)]
#[cfg(target_arch = "x86")]
use std::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use std::arch::x86_64::*;
use std::hint::black_box;
use std::mem::{size_of, transmute};
const IDENTITY_BYTE: i32 = 0;
const CONSTANT_BYTE: i32 = 0x63;
fn main() {
// Mostly copied from library/stdarch/crates/core_arch/src/x86/gfni.rs
assert!(is_x86_feature_detected!("avx512f"));
assert!(is_x86_feature_detected!("gfni"));
unsafe {
let byte_mul_test_data = generate_byte_mul_test_data();
let affine_mul_test_data_identity = generate_affine_mul_test_data(IDENTITY_BYTE as u8);
let affine_mul_test_data_constant = generate_affine_mul_test_data(CONSTANT_BYTE as u8);
let inv_tests_data = generate_inv_tests_data();
test_mm512_gf2p8mul_epi8(&byte_mul_test_data);
test_mm256_gf2p8mul_epi8(&byte_mul_test_data);
test_mm_gf2p8mul_epi8(&byte_mul_test_data);
test_mm512_gf2p8affine_epi64_epi8(&byte_mul_test_data, &affine_mul_test_data_identity);
test_mm256_gf2p8affine_epi64_epi8(&byte_mul_test_data, &affine_mul_test_data_identity);
test_mm_gf2p8affine_epi64_epi8(&byte_mul_test_data, &affine_mul_test_data_identity);
test_mm512_gf2p8affineinv_epi64_epi8(&inv_tests_data, &affine_mul_test_data_constant);
test_mm256_gf2p8affineinv_epi64_epi8(&inv_tests_data, &affine_mul_test_data_constant);
test_mm_gf2p8affineinv_epi64_epi8(&inv_tests_data, &affine_mul_test_data_constant);
}
}
#[target_feature(enable = "gfni,avx512f")]
unsafe fn test_mm512_gf2p8mul_epi8(
byte_mul_test_data: &([u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES]),
) {
let (left, right, expected) = byte_mul_test_data;
for i in 0..NUM_TEST_WORDS_512 {
let left = load_m512i_word(left, i);
let right = load_m512i_word(right, i);
let expected = load_m512i_word(expected, i);
let result = _mm512_gf2p8mul_epi8(left, right);
assert_eq_m512i(result, expected);
}
}
#[target_feature(enable = "gfni,avx")]
unsafe fn test_mm256_gf2p8mul_epi8(
byte_mul_test_data: &([u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES]),
) {
let (left, right, expected) = byte_mul_test_data;
for i in 0..NUM_TEST_WORDS_256 {
let left = load_m256i_word(left, i);
let right = load_m256i_word(right, i);
let expected = load_m256i_word(expected, i);
let result = _mm256_gf2p8mul_epi8(left, right);
assert_eq_m256i(result, expected);
}
}
#[target_feature(enable = "gfni")]
unsafe fn test_mm_gf2p8mul_epi8(
byte_mul_test_data: &([u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES]),
) {
let (left, right, expected) = byte_mul_test_data;
for i in 0..NUM_TEST_WORDS_128 {
let left = load_m128i_word(left, i);
let right = load_m128i_word(right, i);
let expected = load_m128i_word(expected, i);
let result = _mm_gf2p8mul_epi8(left, right);
assert_eq_m128i(result, expected);
}
}
#[target_feature(enable = "gfni,avx512f")]
unsafe fn test_mm512_gf2p8affine_epi64_epi8(
byte_mul_test_data: &([u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES]),
affine_mul_test_data_identity: &(
[u64; NUM_TEST_WORDS_64],
[u8; NUM_TEST_ENTRIES],
[u8; NUM_TEST_ENTRIES],
),
) {
let identity: i64 = 0x01_02_04_08_10_20_40_80;
let constant: i64 = 0;
let identity = _mm512_set1_epi64(identity);
let constant = _mm512_set1_epi64(constant);
let constant_reference = _mm512_set1_epi8(CONSTANT_BYTE as i8);
let (bytes, more_bytes, _) = byte_mul_test_data;
let (matrices, vectors, references) = affine_mul_test_data_identity;
for i in 0..NUM_TEST_WORDS_512 {
let data = load_m512i_word(bytes, i);
let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity);
assert_eq_m512i(result, data);
let result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant);
assert_eq_m512i(result, constant_reference);
let data = load_m512i_word(more_bytes, i);
let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity);
assert_eq_m512i(result, data);
let result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant);
assert_eq_m512i(result, constant_reference);
let matrix = load_m512i_word(matrices, i);
let vector = load_m512i_word(vectors, i);
let reference = load_m512i_word(references, i);
let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix);
assert_eq_m512i(result, reference);
}
}
#[target_feature(enable = "gfni,avx")]
unsafe fn test_mm256_gf2p8affine_epi64_epi8(
byte_mul_test_data: &([u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES]),
affine_mul_test_data_identity: &(
[u64; NUM_TEST_WORDS_64],
[u8; NUM_TEST_ENTRIES],
[u8; NUM_TEST_ENTRIES],
),
) {
let identity: i64 = 0x01_02_04_08_10_20_40_80;
let constant: i64 = 0;
let identity = _mm256_set1_epi64x(identity);
let constant = _mm256_set1_epi64x(constant);
let constant_reference = _mm256_set1_epi8(CONSTANT_BYTE as i8);
let (bytes, more_bytes, _) = byte_mul_test_data;
let (matrices, vectors, references) = affine_mul_test_data_identity;
for i in 0..NUM_TEST_WORDS_256 {
let data = load_m256i_word(bytes, i);
let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity);
assert_eq_m256i(result, data);
let result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant);
assert_eq_m256i(result, constant_reference);
let data = load_m256i_word(more_bytes, i);
let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity);
assert_eq_m256i(result, data);
let result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant);
assert_eq_m256i(result, constant_reference);
let matrix = load_m256i_word(matrices, i);
let vector = load_m256i_word(vectors, i);
let reference = load_m256i_word(references, i);
let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix);
assert_eq_m256i(result, reference);
}
}
#[target_feature(enable = "gfni")]
unsafe fn test_mm_gf2p8affine_epi64_epi8(
byte_mul_test_data: &([u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES]),
affine_mul_test_data_identity: &(
[u64; NUM_TEST_WORDS_64],
[u8; NUM_TEST_ENTRIES],
[u8; NUM_TEST_ENTRIES],
),
) {
let identity: i64 = 0x01_02_04_08_10_20_40_80;
let constant: i64 = 0;
let identity = _mm_set1_epi64x(identity);
let constant = _mm_set1_epi64x(constant);
let constant_reference = _mm_set1_epi8(CONSTANT_BYTE as i8);
let (bytes, more_bytes, _) = byte_mul_test_data;
let (matrices, vectors, references) = affine_mul_test_data_identity;
for i in 0..NUM_TEST_WORDS_128 {
let data = load_m128i_word(bytes, i);
let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity);
assert_eq_m128i(result, data);
let result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant);
assert_eq_m128i(result, constant_reference);
let data = load_m128i_word(more_bytes, i);
let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity);
assert_eq_m128i(result, data);
let result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant);
assert_eq_m128i(result, constant_reference);
let matrix = load_m128i_word(matrices, i);
let vector = load_m128i_word(vectors, i);
let reference = load_m128i_word(references, i);
let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix);
assert_eq_m128i(result, reference);
}
}
#[target_feature(enable = "gfni,avx512f")]
unsafe fn test_mm512_gf2p8affineinv_epi64_epi8(
inv_tests_data: &([u8; NUM_BYTES], [u8; NUM_BYTES]),
affine_mul_test_data_constant: &(
[u64; NUM_TEST_WORDS_64],
[u8; NUM_TEST_ENTRIES],
[u8; NUM_TEST_ENTRIES],
),
) {
let identity: i64 = 0x01_02_04_08_10_20_40_80;
let identity = _mm512_set1_epi64(identity);
// validate inversion
let (inputs, results) = inv_tests_data;
for i in 0..NUM_BYTES_WORDS_512 {
let input = load_m512i_word(inputs, i);
let reference = load_m512i_word(results, i);
let result = _mm512_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity);
let remultiplied = _mm512_gf2p8mul_epi8(result, input);
assert_eq_m512i(remultiplied, reference);
}
// validate subsequent affine operation
let (matrices, vectors, _affine_expected) = affine_mul_test_data_constant;
for i in 0..NUM_TEST_WORDS_512 {
let vector = load_m512i_word(vectors, i);
let matrix = load_m512i_word(matrices, i);
let inv_vec = _mm512_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity);
let reference = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix);
let result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix);
assert_eq_m512i(result, reference);
}
// validate everything by virtue of checking against the AES SBox
const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8;
let sbox_matrix = _mm512_set1_epi64(AES_S_BOX_MATRIX);
for i in 0..NUM_BYTES_WORDS_512 {
let reference = load_m512i_word(&AES_S_BOX, i);
let input = load_m512i_word(inputs, i);
let result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix);
assert_eq_m512i(result, reference);
}
}
#[target_feature(enable = "gfni,avx")]
unsafe fn test_mm256_gf2p8affineinv_epi64_epi8(
inv_tests_data: &([u8; NUM_BYTES], [u8; NUM_BYTES]),
affine_mul_test_data_constant: &(
[u64; NUM_TEST_WORDS_64],
[u8; NUM_TEST_ENTRIES],
[u8; NUM_TEST_ENTRIES],
),
) {
let identity: i64 = 0x01_02_04_08_10_20_40_80;
let identity = _mm256_set1_epi64x(identity);
// validate inversion
let (inputs, results) = inv_tests_data;
for i in 0..NUM_BYTES_WORDS_256 {
let input = load_m256i_word(inputs, i);
let reference = load_m256i_word(results, i);
let result = _mm256_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity);
let remultiplied = _mm256_gf2p8mul_epi8(result, input);
assert_eq_m256i(remultiplied, reference);
}
// validate subsequent affine operation
let (matrices, vectors, _affine_expected) = affine_mul_test_data_constant;
for i in 0..NUM_TEST_WORDS_256 {
let vector = load_m256i_word(vectors, i);
let matrix = load_m256i_word(matrices, i);
let inv_vec = _mm256_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity);
let reference = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix);
let result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix);
assert_eq_m256i(result, reference);
}
// validate everything by virtue of checking against the AES SBox
const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8;
let sbox_matrix = _mm256_set1_epi64x(AES_S_BOX_MATRIX);
for i in 0..NUM_BYTES_WORDS_256 {
let reference = load_m256i_word(&AES_S_BOX, i);
let input = load_m256i_word(inputs, i);
let result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix);
assert_eq_m256i(result, reference);
}
}
#[target_feature(enable = "gfni")]
unsafe fn test_mm_gf2p8affineinv_epi64_epi8(
inv_tests_data: &([u8; NUM_BYTES], [u8; NUM_BYTES]),
affine_mul_test_data_constant: &(
[u64; NUM_TEST_WORDS_64],
[u8; NUM_TEST_ENTRIES],
[u8; NUM_TEST_ENTRIES],
),
) {
let identity: i64 = 0x01_02_04_08_10_20_40_80;
let identity = _mm_set1_epi64x(identity);
// validate inversion
let (inputs, results) = inv_tests_data;
for i in 0..NUM_BYTES_WORDS_128 {
let input = load_m128i_word(inputs, i);
let reference = load_m128i_word(results, i);
let result = _mm_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity);
let remultiplied = _mm_gf2p8mul_epi8(result, input);
assert_eq_m128i(remultiplied, reference);
}
// validate subsequent affine operation
let (matrices, vectors, _affine_expected) = affine_mul_test_data_constant;
for i in 0..NUM_TEST_WORDS_128 {
let vector = load_m128i_word(vectors, i);
let matrix = load_m128i_word(matrices, i);
let inv_vec = _mm_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity);
let reference = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix);
let result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix);
assert_eq_m128i(result, reference);
}
// validate everything by virtue of checking against the AES SBox
const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8;
let sbox_matrix = _mm_set1_epi64x(AES_S_BOX_MATRIX);
for i in 0..NUM_BYTES_WORDS_128 {
let reference = load_m128i_word(&AES_S_BOX, i);
let input = load_m128i_word(inputs, i);
let result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix);
assert_eq_m128i(result, reference);
}
}
/* Various utilities for processing SIMD values. */
#[target_feature(enable = "sse2")]
unsafe fn load_m128i_word<T>(data: &[T], word_index: usize) -> __m128i {
let byte_offset = word_index * 16 / size_of::<T>();
let pointer = data.as_ptr().add(byte_offset) as *const __m128i;
_mm_loadu_si128(black_box(pointer))
}
#[target_feature(enable = "avx")]
unsafe fn load_m256i_word<T>(data: &[T], word_index: usize) -> __m256i {
let byte_offset = word_index * 32 / size_of::<T>();
let pointer = data.as_ptr().add(byte_offset) as *const __m256i;
_mm256_loadu_si256(black_box(pointer))
}
#[target_feature(enable = "avx512f")]
unsafe fn load_m512i_word<T>(data: &[T], word_index: usize) -> __m512i {
let byte_offset = word_index * 64 / size_of::<T>();
let pointer = data.as_ptr().add(byte_offset) as *const i32;
_mm512_loadu_si512(black_box(pointer))
}
#[track_caller]
#[target_feature(enable = "sse2")]
unsafe fn assert_eq_m128i(a: __m128i, b: __m128i) {
assert_eq!(transmute::<_, [u64; 2]>(a), transmute::<_, [u64; 2]>(b))
}
#[track_caller]
#[target_feature(enable = "avx")]
unsafe fn assert_eq_m256i(a: __m256i, b: __m256i) {
assert_eq!(transmute::<_, [u64; 4]>(a), transmute::<_, [u64; 4]>(b))
}
#[track_caller]
#[target_feature(enable = "avx512f")]
unsafe fn assert_eq_m512i(a: __m512i, b: __m512i) {
assert_eq!(transmute::<_, [u64; 8]>(a), transmute::<_, [u64; 8]>(b))
}
/* Software implementation of the hardware intrinsics. */
fn mulbyte(left: u8, right: u8) -> u8 {
// this implementation follows the description in
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8mul_epi8
const REDUCTION_POLYNOMIAL: u16 = 0x11b;
let left: u16 = left.into();
let right: u16 = right.into();
let mut carryless_product: u16 = 0;
// Carryless multiplication
for i in 0..8 {
if ((left >> i) & 0x01) != 0 {
carryless_product ^= right << i;
}
}
// reduction, adding in "0" where appropriate to clear out high bits
// note that REDUCTION_POLYNOMIAL is zero in this context
for i in (8..=14).rev() {
if ((carryless_product >> i) & 0x01) != 0 {
carryless_product ^= REDUCTION_POLYNOMIAL << (i - 8);
}
}
carryless_product as u8
}
/// Calculates the bitwise XOR of all bits inside a byte.
fn parity(input: u8) -> u8 {
let mut accumulator = 0;
for i in 0..8 {
accumulator ^= (input >> i) & 0x01;
}
accumulator
}
/// Calculates `matrix * x + b` inside the finite field GF(2).
fn mat_vec_multiply_affine(matrix: u64, x: u8, b: u8) -> u8 {
// this implementation follows the description in
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8affine_epi64_epi8
let mut accumulator = 0;
for bit in 0..8 {
accumulator |= parity(x & matrix.to_le_bytes()[bit]) << (7 - bit);
}
accumulator ^ b
}
/* Test data generation. */
const NUM_TEST_WORDS_512: usize = 4;
const NUM_TEST_WORDS_256: usize = NUM_TEST_WORDS_512 * 2;
const NUM_TEST_WORDS_128: usize = NUM_TEST_WORDS_256 * 2;
const NUM_TEST_ENTRIES: usize = NUM_TEST_WORDS_512 * 64;
const NUM_TEST_WORDS_64: usize = NUM_TEST_WORDS_128 * 2;
const NUM_BYTES: usize = 256;
const NUM_BYTES_WORDS_128: usize = NUM_BYTES / 16;
const NUM_BYTES_WORDS_256: usize = NUM_BYTES_WORDS_128 / 2;
const NUM_BYTES_WORDS_512: usize = NUM_BYTES_WORDS_256 / 2;
fn generate_affine_mul_test_data(
immediate: u8,
) -> ([u64; NUM_TEST_WORDS_64], [u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES]) {
let mut left: [u64; NUM_TEST_WORDS_64] = [0; NUM_TEST_WORDS_64];
let mut right: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES];
let mut result: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES];
for i in 0..NUM_TEST_WORDS_64 {
left[i] = (i as u64) * 103 * 101;
for j in 0..8 {
let j64 = j as u64;
right[i * 8 + j] = ((left[i] + j64) % 256) as u8;
result[i * 8 + j] = mat_vec_multiply_affine(left[i], right[i * 8 + j], immediate);
}
}
(left, right, result)
}
fn generate_inv_tests_data() -> ([u8; NUM_BYTES], [u8; NUM_BYTES]) {
let mut input: [u8; NUM_BYTES] = [0; NUM_BYTES];
let mut result: [u8; NUM_BYTES] = [0; NUM_BYTES];
for i in 0..NUM_BYTES {
input[i] = (i % 256) as u8;
result[i] = if i == 0 { 0 } else { 1 };
}
(input, result)
}
const AES_S_BOX: [u8; NUM_BYTES] = [
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
];
fn generate_byte_mul_test_data()
-> ([u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES], [u8; NUM_TEST_ENTRIES]) {
let mut left: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES];
let mut right: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES];
let mut result: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES];
for i in 0..NUM_TEST_ENTRIES {
left[i] = (i % 256) as u8;
right[i] = left[i].wrapping_mul(101);
result[i] = mulbyte(left[i], right[i]);
}
(left, right, result)
}