@@ -9,70 +9,140 @@ use super::Float;
9
9
/// These are hand-optimized bit twiddling code,
10
10
/// which unfortunately isn't the easiest kind of code to read.
11
11
///
12
- /// The algorithm is explained here: <https://blog.m-ou.se/floats/>
12
+ /// The algorithm is explained here: <https://blog.m-ou.se/floats/>. It roughly does the following:
13
+ /// - Calculate the exponent based on the base-2 logarithm of `i` (leading zeros)
14
+ /// - Calculate a base mantissa by shifting the integer into mantissa position
15
+ /// - Figure out if rounding needs to occour by classifying truncated bits. Some patterns apply
16
+ /// here, so they may be "squashed" into smaller numbers to spmplifiy the classification.
13
17
mod int_to_float {
18
+ use super :: * ;
19
+
20
+ /// Calculate the exponent from the number of leading zeros.
21
+ fn exp < I : Int , F : Float < Int : CastFrom < u32 > > > ( n : u32 ) -> F :: Int {
22
+ F :: Int :: cast_from ( I :: BITS + F :: EXPONENT_BIAS - 2 - n)
23
+ }
24
+
25
+ /// Shift the integer into the float's mantissa bits. Keep the lowest exponent bit intact.
26
+ fn m_base < I : Int , F : Float < Int : CastFrom < I > > > ( i_m : I ) -> F :: Int {
27
+ F :: Int :: cast_from ( i_m >> ( ( I :: BITS - F :: BITS ) + F :: EXPONENT_BITS ) )
28
+ }
29
+
30
+ /// Calculate the mantissa in cases where the float size is greater than integer size
31
+ fn m_f_gt_i < I : Int , F : Float < Int : CastFrom < I > > > ( i : I , n : u32 ) -> F :: Int {
32
+ F :: Int :: cast_from ( i) << ( F :: SIGNIFICAND_BITS - I :: BITS + 1 + n)
33
+ }
34
+
35
+ /// Calculate the mantissa and a dropped bit adjustment when `f` and `i` are equal sizes
36
+ fn m_f_eq_i < I : Int + CastInto < F :: Int > , F : Float < Int = I > > ( i : I , n : u32 ) -> ( F :: Int , F :: Int ) {
37
+ let base = ( i << n) >> F :: EXPONENT_BITS ;
38
+
39
+ // Only the lowest `F::EXPONENT_BITS` bits will be truncated. Shift them
40
+ // to the highest position
41
+ let adj = ( i << n) << ( F :: SIGNIFICAND_BITS + 1 ) ;
42
+
43
+ ( base, adj)
44
+ }
45
+
46
+ /// Adjust a mantissa with dropped bits
47
+ fn m_adj < F : Float > ( m_base : F :: Int , dropped_bits : F :: Int ) -> F :: Int {
48
+ // Branchlessly extract a `1` if rounding up should happen
49
+ let adj = ( dropped_bits - ( dropped_bits >> ( F :: BITS - 1 ) & !m_base) ) >> ( F :: BITS - 1 ) ;
50
+
51
+ // Add one when we need to round up. Break ties to even.
52
+ m_base + adj
53
+ }
54
+
55
+ /// Combine a final float repr from an exponent and mantissa.
56
+ fn repr < F : Float > ( e : F :: Int , m : F :: Int ) -> F :: Int {
57
+ // + rather than | so the mantissa can overflow into the exponent
58
+ ( e << F :: SIGNIFICAND_BITS ) + m
59
+ }
60
+
61
+ /// Perform a signed operation as unsigned, then add the sign back
62
+ pub fn signed < I , F , Conv > ( i : I , conv : Conv ) -> F
63
+ where
64
+ F : Float ,
65
+ I : Int ,
66
+ F :: Int : CastFrom < I > ,
67
+ Conv : Fn ( I :: UnsignedInt ) -> F :: Int ,
68
+ {
69
+ let sign_bit = F :: Int :: cast_from ( i >> ( I :: BITS - 1 ) ) << ( F :: BITS - 1 ) ;
70
+ F :: from_repr ( conv ( i. unsigned_abs ( ) ) | sign_bit)
71
+ }
72
+
14
73
pub fn u32_to_f32_bits ( i : u32 ) -> u32 {
15
74
if i == 0 {
16
75
return 0 ;
17
76
}
18
77
let n = i. leading_zeros ( ) ;
19
- let a = ( i << n) >> 8 ; // Significant bits, with bit 24 still in tact.
20
- let b = ( i << n) << 24 ; // Insignificant bits, only relevant for rounding.
21
- let m = a + ( ( b - ( b >> 31 & !a) ) >> 31 ) ; // Add one when we need to round up. Break ties to even.
22
- let e = 157 - n; // Exponent plus 127, minus one.
23
- ( e << 23 ) + m // + not |, so the mantissa can overflow into the exponent.
78
+ let ( m_base, adj) = m_f_eq_i :: < u32 , f32 > ( i, n) ;
79
+ let m = m_adj :: < f32 > ( m_base, adj) ;
80
+ let e = exp :: < u32 , f32 > ( n) ;
81
+ repr :: < f32 > ( e, m)
24
82
}
25
83
26
84
pub fn u32_to_f64_bits ( i : u32 ) -> u64 {
27
85
if i == 0 {
28
86
return 0 ;
29
87
}
30
88
let n = i. leading_zeros ( ) ;
31
- let m = ( i as u64 ) << ( 21 + n) ; // Significant bits, with bit 53 still in tact.
32
- let e = 1053 - n as u64 ; // Exponent plus 1023, minus one.
33
- ( e << 52 ) + m // Bit 53 of m will overflow into e.
89
+ let m = m_f_gt_i :: < _ , f64 > ( i , n) ;
90
+ let e = exp :: < u32 , f64 > ( n ) ;
91
+ repr :: < f64 > ( e , m )
34
92
}
35
93
36
94
pub fn u64_to_f32_bits ( i : u64 ) -> u32 {
37
95
let n = i. leading_zeros ( ) ;
38
- let y = i. wrapping_shl ( n) ;
39
- let a = ( y >> 40 ) as u32 ; // Significant bits, with bit 24 still in tact.
40
- let b = ( y >> 8 | y & 0xFFFF ) as u32 ; // Insignificant bits, only relevant for rounding.
41
- let m = a + ( ( b - ( b >> 31 & !a) ) >> 31 ) ; // Add one when we need to round up. Break ties to even.
42
- let e = if i == 0 { 0 } else { 189 - n } ; // Exponent plus 127, minus one, except for zero.
43
- ( e << 23 ) + m // + not |, so the mantissa can overflow into the exponent.
96
+ let i_m = i. wrapping_shl ( n) ; // Mantissa, shifted so the first bit is nonzero
97
+ let m_base = m_base :: < _ , f32 > ( i_m) ;
98
+ // The entire lower half of `i` will be truncated (masked portion), plus the
99
+ // next `EXPONENT_BITS` bits.
100
+ let adj = ( i_m >> f32:: EXPONENT_BITS | i_m & 0xFFFF ) as u32 ;
101
+ let m = m_adj :: < f32 > ( m_base, adj) ;
102
+ let e = if i == 0 { 0 } else { exp :: < u64 , f32 > ( n) } ;
103
+ repr :: < f32 > ( e, m)
44
104
}
45
105
46
106
pub fn u64_to_f64_bits ( i : u64 ) -> u64 {
47
107
if i == 0 {
48
108
return 0 ;
49
109
}
50
110
let n = i. leading_zeros ( ) ;
51
- let a = ( i << n) >> 11 ; // Significant bits, with bit 53 still in tact.
52
- let b = ( i << n) << 53 ; // Insignificant bits, only relevant for rounding.
53
- let m = a + ( ( b - ( b >> 63 & !a) ) >> 63 ) ; // Add one when we need to round up. Break ties to even.
54
- let e = 1085 - n as u64 ; // Exponent plus 1023, minus one.
55
- ( e << 52 ) + m // + not |, so the mantissa can overflow into the exponent.
111
+ let ( m_base, adj) = m_f_eq_i :: < u64 , f64 > ( i, n) ;
112
+ let m = m_adj :: < f64 > ( m_base, adj) ;
113
+ let e = exp :: < u64 , f64 > ( n) ;
114
+ repr :: < f64 > ( e, m)
56
115
}
57
116
58
117
pub fn u128_to_f32_bits ( i : u128 ) -> u32 {
59
118
let n = i. leading_zeros ( ) ;
60
- let y = i. wrapping_shl ( n) ;
61
- let a = ( y >> 104 ) as u32 ; // Significant bits, with bit 24 still in tact.
62
- let b = ( y >> 72 ) as u32 | ( ( y << 32 ) >> 32 != 0 ) as u32 ; // Insignificant bits, only relevant for rounding.
63
- let m = a + ( ( b - ( b >> 31 & !a) ) >> 31 ) ; // Add one when we need to round up. Break ties to even.
64
- let e = if i == 0 { 0 } else { 253 - n } ; // Exponent plus 127, minus one, except for zero.
65
- ( e << 23 ) + m // + not |, so the mantissa can overflow into the exponent.
119
+ let i_m = i. wrapping_shl ( n) ; // Mantissa, shifted so the first bit is nonzero
120
+ let m_base = m_base :: < _ , f32 > ( i_m) ;
121
+
122
+ // Within the upper `F::BITS`, everything except for the signifcand
123
+ // gets truncated
124
+ let d1: u32 = ( i_m >> ( u128:: BITS - f32:: BITS - f32:: SIGNIFICAND_BITS - 1 ) ) . cast ( ) ;
125
+
126
+ // The entire rest of `i_m` gets truncated. Zero the upper `F::BITS` then just
127
+ // check if it is nonzero.
128
+ let d2: u32 = ( i_m << f32:: BITS >> f32:: BITS != 0 ) . into ( ) ;
129
+ let adj = d1 | d2;
130
+
131
+ let m = m_adj :: < f32 > ( m_base, adj) ;
132
+ let e = if i == 0 { 0 } else { exp :: < u128 , f32 > ( n) } ;
133
+ repr :: < f32 > ( e, m)
66
134
}
67
135
68
136
pub fn u128_to_f64_bits ( i : u128 ) -> u64 {
69
137
let n = i. leading_zeros ( ) ;
70
- let y = i. wrapping_shl ( n) ;
71
- let a = ( y >> 75 ) as u64 ; // Significant bits, with bit 53 still in tact.
72
- let b = ( y >> 11 | y & 0xFFFF_FFFF ) as u64 ; // Insignificant bits, only relevant for rounding.
73
- let m = a + ( ( b - ( b >> 63 & !a) ) >> 63 ) ; // Add one when we need to round up. Break ties to even.
74
- let e = if i == 0 { 0 } else { 1149 - n as u64 } ; // Exponent plus 1023, minus one, except for zero.
75
- ( e << 52 ) + m // + not |, so the mantissa can overflow into the exponent.
138
+ let i_m = i. wrapping_shl ( n) ; // Mantissa, shifted so the first bit is nonzero
139
+ let m_base = m_base :: < _ , f64 > ( i_m) ;
140
+ // The entire lower half of `i` will be truncated (masked portion), plus the
141
+ // next `EXPONENT_BITS` bits.
142
+ let adj = ( i_m >> f64:: EXPONENT_BITS | i_m & 0xFFFF_FFFF ) as u64 ;
143
+ let m = m_adj :: < f64 > ( m_base, adj) ;
144
+ let e = if i == 0 { 0 } else { exp :: < u128 , f64 > ( n) } ;
145
+ repr :: < f64 > ( e, m)
76
146
}
77
147
}
78
148
@@ -113,38 +183,32 @@ intrinsics! {
113
183
intrinsics ! {
114
184
#[ arm_aeabi_alias = __aeabi_i2f]
115
185
pub extern "C" fn __floatsisf( i: i32 ) -> f32 {
116
- let sign_bit = ( ( i >> 31 ) as u32 ) << 31 ;
117
- f32 :: from_bits( int_to_float:: u32_to_f32_bits( i. unsigned_abs( ) ) | sign_bit)
186
+ int_to_float:: signed( i, int_to_float:: u32_to_f32_bits)
118
187
}
119
188
120
189
#[ arm_aeabi_alias = __aeabi_i2d]
121
190
pub extern "C" fn __floatsidf( i: i32 ) -> f64 {
122
- let sign_bit = ( ( i >> 31 ) as u64 ) << 63 ;
123
- f64 :: from_bits( int_to_float:: u32_to_f64_bits( i. unsigned_abs( ) ) | sign_bit)
191
+ int_to_float:: signed( i, int_to_float:: u32_to_f64_bits)
124
192
}
125
193
126
194
#[ arm_aeabi_alias = __aeabi_l2f]
127
195
pub extern "C" fn __floatdisf( i: i64 ) -> f32 {
128
- let sign_bit = ( ( i >> 63 ) as u32 ) << 31 ;
129
- f32 :: from_bits( int_to_float:: u64_to_f32_bits( i. unsigned_abs( ) ) | sign_bit)
196
+ int_to_float:: signed( i, int_to_float:: u64_to_f32_bits)
130
197
}
131
198
132
199
#[ arm_aeabi_alias = __aeabi_l2d]
133
200
pub extern "C" fn __floatdidf( i: i64 ) -> f64 {
134
- let sign_bit = ( ( i >> 63 ) as u64 ) << 63 ;
135
- f64 :: from_bits( int_to_float:: u64_to_f64_bits( i. unsigned_abs( ) ) | sign_bit)
201
+ int_to_float:: signed( i, int_to_float:: u64_to_f64_bits)
136
202
}
137
203
138
204
#[ cfg_attr( target_os = "uefi" , unadjusted_on_win64) ]
139
205
pub extern "C" fn __floattisf( i: i128 ) -> f32 {
140
- let sign_bit = ( ( i >> 127 ) as u32 ) << 31 ;
141
- f32 :: from_bits( int_to_float:: u128_to_f32_bits( i. unsigned_abs( ) ) | sign_bit)
206
+ int_to_float:: signed( i, int_to_float:: u128_to_f32_bits)
142
207
}
143
208
144
209
#[ cfg_attr( target_os = "uefi" , unadjusted_on_win64) ]
145
210
pub extern "C" fn __floattidf( i: i128 ) -> f64 {
146
- let sign_bit = ( ( i >> 127 ) as u64 ) << 63 ;
147
- f64 :: from_bits( int_to_float:: u128_to_f64_bits( i. unsigned_abs( ) ) | sign_bit)
211
+ int_to_float:: signed( i, int_to_float:: u128_to_f64_bits)
148
212
}
149
213
}
150
214
0 commit comments