forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRank_of_Matrix.py
53 lines (42 loc) · 1.25 KB
/
Rank_of_Matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""This is a python program that calculates the rank of a matrix"""
""" BY - RUDRANSH BHARDWAJ"""
def swapRows(a, row1, row2):
a[row2], a[row1] = a[row1], a[row2]
return a
def Row_Transformation(a, x, row1, row2):
for i in range(len(a[row2])):
a[row2][i] += a[row1][i] * x
return a
def MatrixRank(a):
ncol = len(a[0])
nrow = len(a)
rank = min(ncol, nrow)
if nrow > ncol:
b = []
for m in range(ncol):
l = []
for n in range(nrow):
l.append(a[n][m])
b.append(l)
a = b
ncol, nrow = nrow, ncol
for r in range(rank):
if a[r][r] != 0:
for j in range(r + 1, nrow):
a = Row_Transformation(a, -(a[j][r] // a[r][r]), r, j)
else:
count1 = True
for k in range(r + 1, nrow):
if a[k][r] != 0:
a = swapRows(a, r, k)
count1 = False
break
if count1:
for i in range(nrow):
a[i][r], a[i][rank - 1] = a[i][rank - 1], a[i][r]
nrow -= 1
count2 = 0
for i in a:
if i == [0] * ncol:
count2 += 1
return rank - count2