forked from aws-powertools/powertools-lambda-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
441 lines (350 loc) · 14.1 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# -*- coding: utf-8 -*-
"""
Batch processing utilities
"""
import copy
import logging
import sys
from abc import ABC, abstractmethod
from enum import Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union, overload
from aws_lambda_powertools.middleware_factory import lambda_handler_decorator
from aws_lambda_powertools.utilities.batch.exceptions import BatchProcessingError, ExceptionInfo
from aws_lambda_powertools.utilities.data_classes.dynamo_db_stream_event import DynamoDBRecord
from aws_lambda_powertools.utilities.data_classes.kinesis_stream_event import KinesisStreamRecord
from aws_lambda_powertools.utilities.data_classes.sqs_event import SQSRecord
logger = logging.getLogger(__name__)
class EventType(Enum):
SQS = "SQS"
KinesisDataStreams = "KinesisDataStreams"
DynamoDBStreams = "DynamoDBStreams"
#
# type specifics
#
has_pydantic = "pydantic" in sys.modules
# For IntelliSense and Mypy to work, we need to account for possible SQS, Kinesis and DynamoDB subclasses
# We need them as subclasses as we must access their message ID or sequence number metadata via dot notation
if has_pydantic:
from aws_lambda_powertools.utilities.parser.models import DynamoDBStreamRecordModel
from aws_lambda_powertools.utilities.parser.models import KinesisDataStreamRecord as KinesisDataStreamRecordModel
from aws_lambda_powertools.utilities.parser.models import SqsRecordModel
BatchTypeModels = Optional[
Union[Type[SqsRecordModel], Type[DynamoDBStreamRecordModel], Type[KinesisDataStreamRecordModel]]
]
# When using processor with default arguments, records will carry EventSourceDataClassTypes
# and depending on what EventType it's passed it'll correctly map to the right record
# When using Pydantic Models, it'll accept any subclass from SQS, DynamoDB and Kinesis
EventSourceDataClassTypes = Union[SQSRecord, KinesisStreamRecord, DynamoDBRecord]
BatchEventTypes = Union[EventSourceDataClassTypes, "BatchTypeModels"]
SuccessResponse = Tuple[str, Any, BatchEventTypes]
FailureResponse = Tuple[str, str, BatchEventTypes]
class BasePartialProcessor(ABC):
"""
Abstract class for batch processors.
"""
def __init__(self):
self.success_messages: List[BatchEventTypes] = []
self.fail_messages: List[BatchEventTypes] = []
self.exceptions: List[ExceptionInfo] = []
@abstractmethod
def _prepare(self):
"""
Prepare context manager.
"""
raise NotImplementedError()
@abstractmethod
def _clean(self):
"""
Clear context manager.
"""
raise NotImplementedError()
@abstractmethod
def _process_record(self, record: dict):
"""
Process record with handler.
"""
raise NotImplementedError()
def process(self) -> List[Tuple]:
"""
Call instance's handler for each record.
"""
return [self._process_record(record) for record in self.records]
def __enter__(self):
self._prepare()
return self
def __exit__(self, exception_type, exception_value, traceback):
self._clean()
def __call__(self, records: List[dict], handler: Callable):
"""
Set instance attributes before execution
Parameters
----------
records: List[dict]
List with objects to be processed.
handler: Callable
Callable to process "records" entries.
"""
self.records = records
self.handler = handler
return self
def success_handler(self, record, result: Any) -> SuccessResponse:
"""
Keeps track of batch records that were processed successfully
Parameters
----------
record: Any
record that succeeded processing
result: Any
result from record handler
Returns
-------
SuccessResponse
"success", result, original record
"""
entry = ("success", result, record)
self.success_messages.append(record)
return entry
def failure_handler(self, record, exception: ExceptionInfo) -> FailureResponse:
"""
Keeps track of batch records that failed processing
Parameters
----------
record: Any
record that failed processing
exception: ExceptionInfo
Exception information containing type, value, and traceback (sys.exc_info())
Returns
-------
FailureResponse
"fail", exceptions args, original record
"""
exception_string = f"{exception[0]}:{exception[1]}"
entry = ("fail", exception_string, record)
logger.debug(f"Record processing exception: {exception_string}")
self.exceptions.append(exception)
self.fail_messages.append(record)
return entry
@lambda_handler_decorator
def batch_processor(
handler: Callable, event: Dict, context: Dict, record_handler: Callable, processor: BasePartialProcessor
):
"""
Middleware to handle batch event processing
Parameters
----------
handler: Callable
Lambda's handler
event: Dict
Lambda's Event
context: Dict
Lambda's Context
record_handler: Callable
Callable to process each record from the batch
processor: BasePartialProcessor
Batch Processor to handle partial failure cases
Examples
--------
**Processes Lambda's event with a BasePartialProcessor**
>>> from aws_lambda_powertools.utilities.batch import batch_processor, BatchProcessor
>>>
>>> def record_handler(record):
>>> return record["body"]
>>>
>>> @batch_processor(record_handler=record_handler, processor=BatchProcessor())
>>> def handler(event, context):
>>> return {"StatusCode": 200}
Limitations
-----------
* Async batch processors
"""
records = event["Records"]
with processor(records, record_handler):
processor.process()
return handler(event, context)
class BatchProcessor(BasePartialProcessor):
"""Process native partial responses from SQS, Kinesis Data Streams, and DynamoDB.
Example
-------
## Process batch triggered by SQS
```python
import json
from aws_lambda_powertools import Logger, Tracer
from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor
from aws_lambda_powertools.utilities.data_classes.sqs_event import SQSRecord
from aws_lambda_powertools.utilities.typing import LambdaContext
processor = BatchProcessor(event_type=EventType.SQS)
tracer = Tracer()
logger = Logger()
@tracer.capture_method
def record_handler(record: SQSRecord):
payload: str = record.body
if payload:
item: dict = json.loads(payload)
...
@logger.inject_lambda_context
@tracer.capture_lambda_handler
@batch_processor(record_handler=record_handler, processor=processor)
def lambda_handler(event, context: LambdaContext):
return processor.response()
```
## Process batch triggered by Kinesis Data Streams
```python
import json
from aws_lambda_powertools import Logger, Tracer
from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor
from aws_lambda_powertools.utilities.data_classes.kinesis_stream_event import KinesisStreamRecord
from aws_lambda_powertools.utilities.typing import LambdaContext
processor = BatchProcessor(event_type=EventType.KinesisDataStreams)
tracer = Tracer()
logger = Logger()
@tracer.capture_method
def record_handler(record: KinesisStreamRecord):
logger.info(record.kinesis.data_as_text)
payload: dict = record.kinesis.data_as_json()
...
@logger.inject_lambda_context
@tracer.capture_lambda_handler
@batch_processor(record_handler=record_handler, processor=processor)
def lambda_handler(event, context: LambdaContext):
return processor.response()
```
## Process batch triggered by DynamoDB Data Streams
```python
import json
from aws_lambda_powertools import Logger, Tracer
from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor
from aws_lambda_powertools.utilities.data_classes.dynamo_db_stream_event import DynamoDBRecord
from aws_lambda_powertools.utilities.typing import LambdaContext
processor = BatchProcessor(event_type=EventType.DynamoDBStreams)
tracer = Tracer()
logger = Logger()
@tracer.capture_method
def record_handler(record: DynamoDBRecord):
logger.info(record.dynamodb.new_image)
payload: dict = json.loads(record.dynamodb.new_image.get("item").s_value)
# alternatively:
# changes: Dict[str, dynamo_db_stream_event.AttributeValue] = record.dynamodb.new_image # noqa: E800
# payload = change.get("Message").raw_event -> {"S": "<payload>"}
...
@logger.inject_lambda_context
@tracer.capture_lambda_handler
def lambda_handler(event, context: LambdaContext):
batch = event["Records"]
with processor(records=batch, processor=processor):
processed_messages = processor.process() # kick off processing, return list[tuple]
return processor.response()
```
Raises
------
BatchProcessingError
When all batch records fail processing
"""
DEFAULT_RESPONSE: Dict[str, List[Optional[dict]]] = {"batchItemFailures": []}
def __init__(self, event_type: EventType, model: Optional["BatchTypeModels"] = None):
"""Process batch and partially report failed items
Parameters
----------
event_type: EventType
Whether this is a SQS, DynamoDB Streams, or Kinesis Data Stream event
model: Optional["BatchTypeModels"]
Parser's data model using either SqsRecordModel, DynamoDBStreamRecordModel, KinesisDataStreamRecord
Exceptions
----------
BatchProcessingError
Raised when the entire batch has failed processing
"""
self.event_type = event_type
self.model = model
self.batch_response = copy.deepcopy(self.DEFAULT_RESPONSE)
self._COLLECTOR_MAPPING = {
EventType.SQS: self._collect_sqs_failures,
EventType.KinesisDataStreams: self._collect_kinesis_failures,
EventType.DynamoDBStreams: self._collect_dynamodb_failures,
}
self._DATA_CLASS_MAPPING = {
EventType.SQS: SQSRecord,
EventType.KinesisDataStreams: KinesisStreamRecord,
EventType.DynamoDBStreams: DynamoDBRecord,
}
super().__init__()
def response(self):
"""Batch items that failed processing, if any"""
return self.batch_response
def _prepare(self):
"""
Remove results from previous execution.
"""
self.success_messages.clear()
self.fail_messages.clear()
self.exceptions.clear()
self.batch_response = copy.deepcopy(self.DEFAULT_RESPONSE)
def _process_record(self, record: dict) -> Union[SuccessResponse, FailureResponse]:
"""
Process a record with instance's handler
Parameters
----------
record: dict
A batch record to be processed.
"""
data = self._to_batch_type(record=record, event_type=self.event_type, model=self.model)
try:
result = self.handler(record=data)
return self.success_handler(record=record, result=result)
except Exception:
return self.failure_handler(record=data, exception=sys.exc_info())
def _clean(self):
"""
Report messages to be deleted in case of partial failure.
"""
if not self._has_messages_to_report():
return
if self._entire_batch_failed():
raise BatchProcessingError(
msg=f"All records failed processing. {len(self.exceptions)} individual errors logged "
f"separately below.",
child_exceptions=self.exceptions,
)
messages = self._get_messages_to_report()
self.batch_response = {"batchItemFailures": messages}
def _has_messages_to_report(self) -> bool:
if self.fail_messages:
return True
logger.debug(f"All {len(self.success_messages)} records successfully processed")
return False
def _entire_batch_failed(self) -> bool:
return len(self.exceptions) == len(self.records)
def _get_messages_to_report(self) -> List[Dict[str, str]]:
"""
Format messages to use in batch deletion
"""
return self._COLLECTOR_MAPPING[self.event_type]()
# Event Source Data Classes follow python idioms for fields
# while Parser/Pydantic follows the event field names to the latter
def _collect_sqs_failures(self):
failures = []
for msg in self.fail_messages:
msg_id = msg.messageId if self.model else msg.message_id
failures.append({"itemIdentifier": msg_id})
return failures
def _collect_kinesis_failures(self):
failures = []
for msg in self.fail_messages:
msg_id = msg.kinesis.sequenceNumber if self.model else msg.kinesis.sequence_number
failures.append({"itemIdentifier": msg_id})
return failures
def _collect_dynamodb_failures(self):
failures = []
for msg in self.fail_messages:
msg_id = msg.dynamodb.SequenceNumber if self.model else msg.dynamodb.sequence_number
failures.append({"itemIdentifier": msg_id})
return failures
@overload
def _to_batch_type(self, record: dict, event_type: EventType, model: "BatchTypeModels") -> "BatchTypeModels":
... # pragma: no cover
@overload
def _to_batch_type(self, record: dict, event_type: EventType) -> EventSourceDataClassTypes:
... # pragma: no cover
def _to_batch_type(self, record: dict, event_type: EventType, model: Optional["BatchTypeModels"] = None):
if model is not None:
return model.parse_obj(record)
return self._DATA_CLASS_MAPPING[event_type](record)