Skip to content

Commit 4398706

Browse files
committed
PERF: fix pandas-dev#32976 slow group by for categorical columns
Aggregate categorical codes with fast cython aggregation for select `how` operations.
1 parent 77a0f19 commit 4398706

File tree

4 files changed

+50
-2
lines changed

4 files changed

+50
-2
lines changed

asv_bench/benchmarks/groupby.py

+27
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@
66

77
from pandas import (
88
Categorical,
9+
CategoricalDtype,
910
DataFrame,
1011
MultiIndex,
1112
Series,
@@ -473,6 +474,7 @@ def time_sum(self):
473474

474475

475476
class Categories:
477+
# benchmark grouping by categoricals
476478
def setup(self):
477479
N = 10 ** 5
478480
arr = np.random.random(N)
@@ -510,6 +512,31 @@ def time_groupby_extra_cat_nosort(self):
510512
self.df_extra_cat.groupby("a", sort=False)["b"].count()
511513

512514

515+
class CategoricalFrame:
516+
# benchmark grouping with operations on categorical values (GH #32976)
517+
param_names = ["n_groups", "cardinality"]
518+
params = [(1000, 10000), (10, 50)]
519+
520+
def setup(self, n_groups, cardinality):
521+
SIZE = 100000
522+
GROUPS = 10000 # The larger, the more extreme the timing differences
523+
CARDINALITY = 10
524+
CAT = CategoricalDtype(list(range(CARDINALITY)))
525+
df_int = DataFrame(
526+
{
527+
"group": [np.random.randint(0, GROUPS) for i in range(SIZE)],
528+
"cat": [np.random.choice(CAT.categories) for i in range(SIZE)],
529+
}
530+
)
531+
self.df_cat_values = df_int.astype({"cat": CAT})
532+
533+
def time_groupby(self, n_groups, cardinality):
534+
self.df_cat_values.groupby("group").last()
535+
536+
def time_groupby_ordered(self, n_groups, cardinality):
537+
self.df_cat_values.groupby("group", sort=True).last()
538+
539+
513540
class Datelike:
514541
# GH 14338
515542
params = ["period_range", "date_range", "date_range_tz"]

doc/source/whatsnew/v1.1.0.rst

+1
Original file line numberDiff line numberDiff line change
@@ -427,6 +427,7 @@ Performance improvements
427427
:meth:`DataFrame.sparse.from_spmatrix` constructor (:issue:`32821`,
428428
:issue:`32825`, :issue:`32826`, :issue:`32856`, :issue:`32858`).
429429
- Performance improvement in reductions (sum, prod, min, max) for nullable (integer and boolean) dtypes (:issue:`30982`, :issue:`33261`, :issue:`33442`).
430+
- Performance improvement in :meth:`DataFrame.groupby` when aggregating categorical data (:issue:`32976`)
430431

431432

432433
.. ---------------------------------------------------------------------------

pandas/core/groupby/ops.py

+21-1
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,7 @@
3939
from pandas.core.dtypes.missing import _maybe_fill, isna
4040

4141
import pandas.core.algorithms as algorithms
42+
from pandas.core.arrays.categorical import Categorical
4243
from pandas.core.base import SelectionMixin
4344
import pandas.core.common as com
4445
from pandas.core.frame import DataFrame
@@ -451,7 +452,7 @@ def _cython_operation(
451452

452453
# categoricals are only 1d, so we
453454
# are not setup for dim transforming
454-
if is_categorical_dtype(values) or is_sparse(values):
455+
if is_sparse(values):
455456
raise NotImplementedError(f"{values.dtype} dtype not supported")
456457
elif is_datetime64_any_dtype(values):
457458
if how in ["add", "prod", "cumsum", "cumprod"]:
@@ -472,6 +473,9 @@ def _cython_operation(
472473

473474
is_datetimelike = needs_i8_conversion(values.dtype)
474475
is_numeric = is_numeric_dtype(values.dtype)
476+
is_categorical = is_categorical_dtype(values)
477+
cat_method_blacklist = (
478+
)
475479

476480
if is_datetimelike:
477481
values = values.view("int64")
@@ -487,6 +491,17 @@ def _cython_operation(
487491
values = ensure_int_or_float(values)
488492
elif is_numeric and not is_complex_dtype(values):
489493
values = ensure_float64(values)
494+
elif is_categorical:
495+
if how in cat_method_blacklist:
496+
raise NotImplementedError(
497+
f"{values.dtype} dtype not supported for `how` argument {how}"
498+
)
499+
values, categories, ordered = (
500+
values.codes.astype(np.int64),
501+
values.categories,
502+
values.ordered,
503+
)
504+
is_numeric = True
490505
else:
491506
values = values.astype(object)
492507

@@ -574,6 +589,11 @@ def _cython_operation(
574589
result = type(orig_values)(result.astype(np.int64), dtype=orig_values.dtype)
575590
elif is_datetimelike and kind == "aggregate":
576591
result = result.astype(orig_values.dtype)
592+
elif is_categorical:
593+
# re-create categories
594+
result = Categorical.from_codes(
595+
result, categories=categories, ordered=ordered,
596+
)
577597

578598
return result, names
579599

pandas/tests/groupby/aggregate/test_aggregate.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -466,7 +466,7 @@ def test_agg_cython_category_not_implemented_fallback():
466466
result = df.groupby("col_num").col_cat.first()
467467
expected = pd.Series(
468468
[1, 2, 3], index=pd.Index([1, 2, 3], name="col_num"), name="col_cat"
469-
)
469+
).astype("category")
470470
tm.assert_series_equal(result, expected)
471471

472472
result = df.groupby("col_num").agg({"col_cat": "first"})

0 commit comments

Comments
 (0)