forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_series.py
1525 lines (1202 loc) · 56.5 KB
/
test_series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# pylint: disable-msg=E1101,W0612
import operator
from datetime import datetime
import pytest
from numpy import nan
import numpy as np
import pandas as pd
from pandas import Series, DataFrame, bdate_range, isna, compat
from pandas.errors import PerformanceWarning
from pandas.tseries.offsets import BDay
import pandas.util.testing as tm
import pandas.util._test_decorators as td
from pandas.compat import range, PY36
from pandas.core.reshape.util import cartesian_product
import pandas.core.sparse.frame as spf
from pandas._libs.sparse import BlockIndex, IntIndex
from pandas import SparseSeries, SparseDtype
from pandas.tests.series.test_api import SharedWithSparse
def _test_data1():
# nan-based
arr = np.arange(20, dtype=float)
index = np.arange(20)
arr[:2] = nan
arr[5:10] = nan
arr[-3:] = nan
return arr, index
def _test_data2():
# nan-based
arr = np.arange(15, dtype=float)
index = np.arange(15)
arr[7:12] = nan
arr[-1:] = nan
return arr, index
def _test_data1_zero():
# zero-based
arr, index = _test_data1()
arr[np.isnan(arr)] = 0
return arr, index
def _test_data2_zero():
# zero-based
arr, index = _test_data2()
arr[np.isnan(arr)] = 0
return arr, index
class TestSparseSeries(SharedWithSparse):
series_klass = SparseSeries
# SharedWithSparse tests use generic, series_klass-agnostic assertion
_assert_series_equal = staticmethod(tm.assert_sp_series_equal)
def setup_method(self, method):
arr, index = _test_data1()
date_index = bdate_range('1/1/2011', periods=len(index))
self.bseries = SparseSeries(arr, index=index, kind='block',
name='bseries')
self.ts = self.bseries
self.btseries = SparseSeries(arr, index=date_index, kind='block')
self.iseries = SparseSeries(arr, index=index, kind='integer',
name='iseries')
arr, index = _test_data2()
self.bseries2 = SparseSeries(arr, index=index, kind='block')
self.iseries2 = SparseSeries(arr, index=index, kind='integer')
arr, index = _test_data1_zero()
self.zbseries = SparseSeries(arr, index=index, kind='block',
fill_value=0, name='zbseries')
self.ziseries = SparseSeries(arr, index=index, kind='integer',
fill_value=0)
arr, index = _test_data2_zero()
self.zbseries2 = SparseSeries(arr, index=index, kind='block',
fill_value=0)
self.ziseries2 = SparseSeries(arr, index=index, kind='integer',
fill_value=0)
def test_constructor_dict_input(self):
# gh-16905
constructor_dict = {1: 1.}
index = [0, 1, 2]
# Series with index passed in
series = pd.Series(constructor_dict)
expected = SparseSeries(series, index=index)
result = SparseSeries(constructor_dict, index=index)
tm.assert_sp_series_equal(result, expected)
# Series with index and dictionary with no index
expected = SparseSeries(series)
result = SparseSeries(constructor_dict)
tm.assert_sp_series_equal(result, expected)
def test_constructor_dict_order(self):
# GH19018
# initialization ordering: by insertion order if python>= 3.6, else
# order by value
d = {'b': 1, 'a': 0, 'c': 2}
result = SparseSeries(d)
if PY36:
expected = SparseSeries([1, 0, 2], index=list('bac'))
else:
expected = SparseSeries([0, 1, 2], index=list('abc'))
tm.assert_sp_series_equal(result, expected)
def test_constructor_dtype(self):
arr = SparseSeries([np.nan, 1, 2, np.nan])
assert arr.dtype == SparseDtype(np.float64)
assert np.isnan(arr.fill_value)
arr = SparseSeries([np.nan, 1, 2, np.nan], fill_value=0)
assert arr.dtype == SparseDtype(np.float64, 0)
assert arr.fill_value == 0
arr = SparseSeries([0, 1, 2, 4], dtype=np.int64, fill_value=np.nan)
assert arr.dtype == SparseDtype(np.int64, np.nan)
assert np.isnan(arr.fill_value)
arr = SparseSeries([0, 1, 2, 4], dtype=np.int64)
assert arr.dtype == SparseDtype(np.int64, 0)
assert arr.fill_value == 0
arr = SparseSeries([0, 1, 2, 4], fill_value=0, dtype=np.int64)
assert arr.dtype == SparseDtype(np.int64, 0)
assert arr.fill_value == 0
def test_iteration_and_str(self):
[x for x in self.bseries]
str(self.bseries)
def test_construct_DataFrame_with_sp_series(self):
# it works!
df = DataFrame({'col': self.bseries})
# printing & access
df.iloc[:1]
df['col']
df.dtypes
str(df)
# blocking
expected = Series({'col': 'float64:sparse'})
result = df.ftypes
tm.assert_series_equal(expected, result)
def test_constructor_preserve_attr(self):
arr = pd.SparseArray([1, 0, 3, 0], dtype=np.int64, fill_value=0)
assert arr.dtype == SparseDtype(np.int64)
assert arr.fill_value == 0
s = pd.SparseSeries(arr, name='x')
assert s.dtype == SparseDtype(np.int64)
assert s.fill_value == 0
def test_series_density(self):
# GH2803
ts = Series(np.random.randn(10))
ts[2:-2] = nan
sts = ts.to_sparse()
density = sts.density # don't die
assert density == 4 / 10.0
def test_sparse_to_dense(self):
arr, index = _test_data1()
series = self.bseries.to_dense()
tm.assert_series_equal(series, Series(arr, name='bseries'))
series = self.iseries.to_dense()
tm.assert_series_equal(series, Series(arr, name='iseries'))
arr, index = _test_data1_zero()
series = self.zbseries.to_dense()
tm.assert_series_equal(series, Series(arr, name='zbseries'))
series = self.ziseries.to_dense()
tm.assert_series_equal(series, Series(arr))
def test_to_dense_fill_value(self):
s = pd.Series([1, np.nan, np.nan, 3, np.nan])
res = SparseSeries(s).to_dense()
tm.assert_series_equal(res, s)
res = SparseSeries(s, fill_value=0).to_dense()
tm.assert_series_equal(res, s)
s = pd.Series([1, np.nan, 0, 3, 0])
res = SparseSeries(s, fill_value=0).to_dense()
tm.assert_series_equal(res, s)
res = SparseSeries(s, fill_value=0).to_dense()
tm.assert_series_equal(res, s)
s = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan])
res = SparseSeries(s).to_dense()
tm.assert_series_equal(res, s)
s = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan])
res = SparseSeries(s, fill_value=0).to_dense()
tm.assert_series_equal(res, s)
def test_dense_to_sparse(self):
series = self.bseries.to_dense()
bseries = series.to_sparse(kind='block')
iseries = series.to_sparse(kind='integer')
tm.assert_sp_series_equal(bseries, self.bseries)
tm.assert_sp_series_equal(iseries, self.iseries, check_names=False)
assert iseries.name == self.bseries.name
assert len(series) == len(bseries)
assert len(series) == len(iseries)
assert series.shape == bseries.shape
assert series.shape == iseries.shape
# non-NaN fill value
series = self.zbseries.to_dense()
zbseries = series.to_sparse(kind='block', fill_value=0)
ziseries = series.to_sparse(kind='integer', fill_value=0)
tm.assert_sp_series_equal(zbseries, self.zbseries)
tm.assert_sp_series_equal(ziseries, self.ziseries, check_names=False)
assert ziseries.name == self.zbseries.name
assert len(series) == len(zbseries)
assert len(series) == len(ziseries)
assert series.shape == zbseries.shape
assert series.shape == ziseries.shape
def test_to_dense_preserve_name(self):
assert (self.bseries.name is not None)
result = self.bseries.to_dense()
assert result.name == self.bseries.name
def test_constructor(self):
# test setup guys
assert np.isnan(self.bseries.fill_value)
assert isinstance(self.bseries.sp_index, BlockIndex)
assert np.isnan(self.iseries.fill_value)
assert isinstance(self.iseries.sp_index, IntIndex)
assert self.zbseries.fill_value == 0
tm.assert_numpy_array_equal(self.zbseries.values.values,
self.bseries.to_dense().fillna(0).values)
# pass SparseSeries
def _check_const(sparse, name):
# use passed series name
result = SparseSeries(sparse)
tm.assert_sp_series_equal(result, sparse)
assert sparse.name == name
assert result.name == name
# use passed name
result = SparseSeries(sparse, name='x')
tm.assert_sp_series_equal(result, sparse, check_names=False)
assert result.name == 'x'
_check_const(self.bseries, 'bseries')
_check_const(self.iseries, 'iseries')
_check_const(self.zbseries, 'zbseries')
# Sparse time series works
date_index = bdate_range('1/1/2000', periods=len(self.bseries))
s5 = SparseSeries(self.bseries, index=date_index)
assert isinstance(s5, SparseSeries)
# pass Series
bseries2 = SparseSeries(self.bseries.to_dense())
tm.assert_numpy_array_equal(self.bseries.sp_values, bseries2.sp_values)
# pass dict?
# don't copy the data by default
values = np.ones(self.bseries.npoints)
sp = SparseSeries(values, sparse_index=self.bseries.sp_index)
sp.sp_values[:5] = 97
assert values[0] == 97
assert len(sp) == 20
assert sp.shape == (20, )
# but can make it copy!
sp = SparseSeries(values, sparse_index=self.bseries.sp_index,
copy=True)
sp.sp_values[:5] = 100
assert values[0] == 97
assert len(sp) == 20
assert sp.shape == (20, )
def test_constructor_scalar(self):
data = 5
sp = SparseSeries(data, np.arange(100))
sp = sp.reindex(np.arange(200))
assert (sp.loc[:99] == data).all()
assert isna(sp.loc[100:]).all()
data = np.nan
sp = SparseSeries(data, np.arange(100))
assert len(sp) == 100
assert sp.shape == (100, )
def test_constructor_ndarray(self):
pass
def test_constructor_nonnan(self):
arr = [0, 0, 0, nan, nan]
sp_series = SparseSeries(arr, fill_value=0)
tm.assert_numpy_array_equal(sp_series.values.values, np.array(arr))
assert len(sp_series) == 5
assert sp_series.shape == (5, )
def test_constructor_empty(self):
# see gh-9272
sp = SparseSeries()
assert len(sp.index) == 0
assert sp.shape == (0, )
def test_copy_astype(self):
cop = self.bseries.astype(np.float64)
assert cop is not self.bseries
assert cop.sp_index is self.bseries.sp_index
assert cop.dtype == SparseDtype(np.float64)
cop2 = self.iseries.copy()
tm.assert_sp_series_equal(cop, self.bseries)
tm.assert_sp_series_equal(cop2, self.iseries)
# test that data is copied
cop[:5] = 97
assert cop.sp_values[0] == 97
assert self.bseries.sp_values[0] != 97
# correct fill value
zbcop = self.zbseries.copy()
zicop = self.ziseries.copy()
tm.assert_sp_series_equal(zbcop, self.zbseries)
tm.assert_sp_series_equal(zicop, self.ziseries)
# no deep copy
view = self.bseries.copy(deep=False)
view.sp_values[:5] = 5
assert (self.bseries.sp_values[:5] == 5).all()
def test_shape(self):
# see gh-10452
assert self.bseries.shape == (20, )
assert self.btseries.shape == (20, )
assert self.iseries.shape == (20, )
assert self.bseries2.shape == (15, )
assert self.iseries2.shape == (15, )
assert self.zbseries2.shape == (15, )
assert self.ziseries2.shape == (15, )
def test_astype(self):
result = self.bseries.astype(SparseDtype(np.int64, 0))
expected = (self.bseries.to_dense()
.fillna(0)
.astype(np.int64)
.to_sparse(fill_value=0))
tm.assert_sp_series_equal(result, expected)
def test_astype_all(self):
orig = pd.Series(np.array([1, 2, 3]))
s = SparseSeries(orig)
types = [np.float64, np.float32, np.int64,
np.int32, np.int16, np.int8]
for typ in types:
dtype = SparseDtype(typ)
res = s.astype(dtype)
assert res.dtype == dtype
tm.assert_series_equal(res.to_dense(), orig.astype(typ))
def test_kind(self):
assert self.bseries.kind == 'block'
assert self.iseries.kind == 'integer'
def test_to_frame(self):
# GH 9850
s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x')
exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]})
tm.assert_sp_frame_equal(s.to_frame(), exp)
exp = pd.SparseDataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
tm.assert_sp_frame_equal(s.to_frame(name='y'), exp)
s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x', fill_value=0)
exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]},
default_fill_value=0)
tm.assert_sp_frame_equal(s.to_frame(), exp)
exp = pd.DataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
tm.assert_frame_equal(s.to_frame(name='y').to_dense(), exp)
def test_pickle(self):
def _test_roundtrip(series):
unpickled = tm.round_trip_pickle(series)
tm.assert_sp_series_equal(series, unpickled)
tm.assert_series_equal(series.to_dense(), unpickled.to_dense())
self._check_all(_test_roundtrip)
def _check_all(self, check_func):
check_func(self.bseries)
check_func(self.iseries)
check_func(self.zbseries)
check_func(self.ziseries)
def test_getitem(self):
def _check_getitem(sp, dense):
for idx, val in compat.iteritems(dense):
tm.assert_almost_equal(val, sp[idx])
for i in range(len(dense)):
tm.assert_almost_equal(sp[i], dense[i])
# j = np.float64(i)
# assert_almost_equal(sp[j], dense[j])
# API change 1/6/2012
# negative getitem works
# for i in xrange(len(dense)):
# assert_almost_equal(sp[-i], dense[-i])
_check_getitem(self.bseries, self.bseries.to_dense())
_check_getitem(self.btseries, self.btseries.to_dense())
_check_getitem(self.zbseries, self.zbseries.to_dense())
_check_getitem(self.iseries, self.iseries.to_dense())
_check_getitem(self.ziseries, self.ziseries.to_dense())
# exception handling
pytest.raises(Exception, self.bseries.__getitem__,
len(self.bseries) + 1)
# index not contained
pytest.raises(Exception, self.btseries.__getitem__,
self.btseries.index[-1] + BDay())
def test_get_get_value(self):
tm.assert_almost_equal(self.bseries.get(10), self.bseries[10])
assert self.bseries.get(len(self.bseries) + 1) is None
dt = self.btseries.index[10]
result = self.btseries.get(dt)
expected = self.btseries.to_dense()[dt]
tm.assert_almost_equal(result, expected)
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
tm.assert_almost_equal(
self.bseries.get_value(10), self.bseries[10])
def test_set_value(self):
idx = self.btseries.index[7]
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
self.btseries.set_value(idx, 0)
assert self.btseries[idx] == 0
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
self.iseries.set_value('foobar', 0)
assert self.iseries.index[-1] == 'foobar'
assert self.iseries['foobar'] == 0
def test_getitem_slice(self):
idx = self.bseries.index
res = self.bseries[::2]
assert isinstance(res, SparseSeries)
expected = self.bseries.reindex(idx[::2])
tm.assert_sp_series_equal(res, expected)
res = self.bseries[:5]
assert isinstance(res, SparseSeries)
tm.assert_sp_series_equal(res, self.bseries.reindex(idx[:5]))
res = self.bseries[5:]
tm.assert_sp_series_equal(res, self.bseries.reindex(idx[5:]))
# negative indices
res = self.bseries[:-3]
tm.assert_sp_series_equal(res, self.bseries.reindex(idx[:-3]))
def test_take(self):
def _compare_with_dense(sp):
dense = sp.to_dense()
def _compare(idx):
dense_result = dense.take(idx).values
sparse_result = sp.take(idx)
assert isinstance(sparse_result, SparseSeries)
tm.assert_almost_equal(dense_result,
sparse_result.values.values)
_compare([1., 2., 3., 4., 5., 0.])
_compare([7, 2, 9, 0, 4])
_compare([3, 6, 3, 4, 7])
self._check_all(_compare_with_dense)
pytest.raises(Exception, self.bseries.take,
[0, len(self.bseries) + 1])
# Corner case
# XXX: changed test. Why wsa this considered a corner case?
sp = SparseSeries(np.ones(10) * nan)
exp = pd.Series(np.repeat(nan, 5))
tm.assert_series_equal(sp.take([0, 1, 2, 3, 4]), exp.to_sparse())
with tm.assert_produces_warning(FutureWarning):
sp.take([1, 5], convert=True)
with tm.assert_produces_warning(FutureWarning):
sp.take([1, 5], convert=False)
def test_numpy_take(self):
sp = SparseSeries([1.0, 2.0, 3.0])
indices = [1, 2]
tm.assert_series_equal(np.take(sp, indices, axis=0).to_dense(),
np.take(sp.to_dense(), indices, axis=0))
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.take(sp, indices, out=np.empty(sp.shape))
msg = "the 'mode' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.take(sp, indices, out=None, mode='clip')
def test_setitem(self):
self.bseries[5] = 7.
assert self.bseries[5] == 7.
def test_setslice(self):
self.bseries[5:10] = 7.
tm.assert_series_equal(self.bseries[5:10].to_dense(),
Series(7., index=range(5, 10),
name=self.bseries.name))
def test_operators(self):
def _check_op(a, b, op):
sp_result = op(a, b)
adense = a.to_dense() if isinstance(a, SparseSeries) else a
bdense = b.to_dense() if isinstance(b, SparseSeries) else b
dense_result = op(adense, bdense)
tm.assert_almost_equal(sp_result.to_dense(), dense_result)
def check(a, b):
_check_op(a, b, operator.add)
_check_op(a, b, operator.sub)
_check_op(a, b, operator.truediv)
_check_op(a, b, operator.floordiv)
_check_op(a, b, operator.mul)
_check_op(a, b, lambda x, y: operator.add(y, x))
_check_op(a, b, lambda x, y: operator.sub(y, x))
_check_op(a, b, lambda x, y: operator.truediv(y, x))
_check_op(a, b, lambda x, y: operator.floordiv(y, x))
_check_op(a, b, lambda x, y: operator.mul(y, x))
# NaN ** 0 = 1 in C?
# _check_op(a, b, operator.pow)
# _check_op(a, b, lambda x, y: operator.pow(y, x))
check(self.bseries, self.bseries)
check(self.iseries, self.iseries)
check(self.bseries, self.iseries)
check(self.bseries, self.bseries2)
check(self.bseries, self.iseries2)
check(self.iseries, self.iseries2)
# scalar value
check(self.bseries, 5)
# zero-based
check(self.zbseries, self.zbseries * 2)
check(self.zbseries, self.zbseries2)
check(self.ziseries, self.ziseries2)
# with dense
result = self.bseries + self.bseries.to_dense()
tm.assert_sp_series_equal(result, self.bseries + self.bseries)
def test_binary_operators(self):
# skipping for now #####
import pytest
pytest.skip("skipping sparse binary operators test")
def _check_inplace_op(iop, op):
tmp = self.bseries.copy()
expected = op(tmp, self.bseries)
iop(tmp, self.bseries)
tm.assert_sp_series_equal(tmp, expected)
inplace_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'pow']
for op in inplace_ops:
_check_inplace_op(getattr(operator, "i%s" % op),
getattr(operator, op))
@pytest.mark.parametrize("values, op, fill_value", [
([True, False, False, True], operator.invert, True),
([True, False, False, True], operator.invert, False),
([0, 1, 2, 3], operator.pos, 0),
([0, 1, 2, 3], operator.neg, 0),
([0, np.nan, 2, 3], operator.pos, np.nan),
([0, np.nan, 2, 3], operator.neg, np.nan),
])
def test_unary_operators(self, values, op, fill_value):
# https://github.com/pandas-dev/pandas/issues/22835
values = np.asarray(values)
if op is operator.invert:
new_fill_value = not fill_value
else:
new_fill_value = op(fill_value)
s = SparseSeries(values,
fill_value=fill_value,
index=['a', 'b', 'c', 'd'],
name='name')
result = op(s)
expected = SparseSeries(op(values),
fill_value=new_fill_value,
index=['a', 'b', 'c', 'd'],
name='name')
tm.assert_sp_series_equal(result, expected)
def test_abs(self):
s = SparseSeries([1, 2, -3], name='x')
expected = SparseSeries([1, 2, 3], name='x')
result = s.abs()
tm.assert_sp_series_equal(result, expected)
assert result.name == 'x'
result = abs(s)
tm.assert_sp_series_equal(result, expected)
assert result.name == 'x'
result = np.abs(s)
tm.assert_sp_series_equal(result, expected)
assert result.name == 'x'
s = SparseSeries([1, -2, 2, -3], fill_value=-2, name='x')
expected = SparseSeries([1, 2, 3], sparse_index=s.sp_index,
fill_value=2, name='x')
result = s.abs()
tm.assert_sp_series_equal(result, expected)
assert result.name == 'x'
result = abs(s)
tm.assert_sp_series_equal(result, expected)
assert result.name == 'x'
result = np.abs(s)
tm.assert_sp_series_equal(result, expected)
assert result.name == 'x'
def test_reindex(self):
def _compare_with_series(sps, new_index):
spsre = sps.reindex(new_index)
series = sps.to_dense()
seriesre = series.reindex(new_index)
seriesre = seriesre.to_sparse(fill_value=sps.fill_value)
tm.assert_sp_series_equal(spsre, seriesre)
tm.assert_series_equal(spsre.to_dense(), seriesre.to_dense())
_compare_with_series(self.bseries, self.bseries.index[::2])
_compare_with_series(self.bseries, list(self.bseries.index[::2]))
_compare_with_series(self.bseries, self.bseries.index[:10])
_compare_with_series(self.bseries, self.bseries.index[5:])
_compare_with_series(self.zbseries, self.zbseries.index[::2])
_compare_with_series(self.zbseries, self.zbseries.index[:10])
_compare_with_series(self.zbseries, self.zbseries.index[5:])
# special cases
same_index = self.bseries.reindex(self.bseries.index)
tm.assert_sp_series_equal(self.bseries, same_index)
assert same_index is not self.bseries
# corner cases
sp = SparseSeries([], index=[])
# TODO: sp_zero is not used anywhere...remove?
sp_zero = SparseSeries([], index=[], fill_value=0) # noqa
_compare_with_series(sp, np.arange(10))
# with copy=False
reindexed = self.bseries.reindex(self.bseries.index, copy=True)
reindexed.sp_values[:] = 1.
assert (self.bseries.sp_values != 1.).all()
reindexed = self.bseries.reindex(self.bseries.index, copy=False)
reindexed.sp_values[:] = 1.
tm.assert_numpy_array_equal(self.bseries.sp_values, np.repeat(1., 10))
def test_sparse_reindex(self):
length = 10
def _check(values, index1, index2, fill_value):
first_series = SparseSeries(values, sparse_index=index1,
fill_value=fill_value)
reindexed = first_series.sparse_reindex(index2)
assert reindexed.sp_index is index2
int_indices1 = index1.to_int_index().indices
int_indices2 = index2.to_int_index().indices
expected = Series(values, index=int_indices1)
expected = expected.reindex(int_indices2).fillna(fill_value)
tm.assert_almost_equal(expected.values, reindexed.sp_values)
# make sure level argument asserts
# TODO: expected is not used anywhere...remove?
expected = expected.reindex(int_indices2).fillna(fill_value) # noqa
def _check_with_fill_value(values, first, second, fill_value=nan):
i_index1 = IntIndex(length, first)
i_index2 = IntIndex(length, second)
b_index1 = i_index1.to_block_index()
b_index2 = i_index2.to_block_index()
_check(values, i_index1, i_index2, fill_value)
_check(values, b_index1, b_index2, fill_value)
def _check_all(values, first, second):
_check_with_fill_value(values, first, second, fill_value=nan)
_check_with_fill_value(values, first, second, fill_value=0)
index1 = [2, 4, 5, 6, 8, 9]
values1 = np.arange(6.)
_check_all(values1, index1, [2, 4, 5])
_check_all(values1, index1, [2, 3, 4, 5, 6, 7, 8, 9])
_check_all(values1, index1, [0, 1])
_check_all(values1, index1, [0, 1, 7, 8, 9])
_check_all(values1, index1, [])
first_series = SparseSeries(values1,
sparse_index=IntIndex(length, index1),
fill_value=nan)
with pytest.raises(TypeError,
match='new index must be a SparseIndex'):
first_series.sparse_reindex(0)
def test_repr(self):
# TODO: These aren't used
bsrepr = repr(self.bseries) # noqa
isrepr = repr(self.iseries) # noqa
def test_iter(self):
pass
def test_truncate(self):
pass
def test_fillna(self):
pass
def test_groupby(self):
pass
def test_reductions(self):
def _compare_with_dense(obj, op):
sparse_result = getattr(obj, op)()
series = obj.to_dense()
dense_result = getattr(series, op)()
assert sparse_result == dense_result
to_compare = ['count', 'sum', 'mean', 'std', 'var', 'skew']
def _compare_all(obj):
for op in to_compare:
_compare_with_dense(obj, op)
_compare_all(self.bseries)
self.bseries.sp_values[5:10] = np.NaN
_compare_all(self.bseries)
_compare_all(self.zbseries)
self.zbseries.sp_values[5:10] = np.NaN
_compare_all(self.zbseries)
series = self.zbseries.copy()
series.fill_value = 2
_compare_all(series)
nonna = Series(np.random.randn(20)).to_sparse()
_compare_all(nonna)
nonna2 = Series(np.random.randn(20)).to_sparse(fill_value=0)
_compare_all(nonna2)
def test_dropna(self):
sp = SparseSeries([0, 0, 0, nan, nan, 5, 6], fill_value=0)
sp_valid = sp.dropna()
expected = sp.to_dense().dropna()
expected = expected[expected != 0]
exp_arr = pd.SparseArray(expected.values, fill_value=0, kind='block')
tm.assert_sp_array_equal(sp_valid.values, exp_arr)
tm.assert_index_equal(sp_valid.index, expected.index)
assert len(sp_valid.sp_values) == 2
result = self.bseries.dropna()
expected = self.bseries.to_dense().dropna()
assert not isinstance(result, SparseSeries)
tm.assert_series_equal(result, expected)
def test_homogenize(self):
def _check_matches(indices, expected):
data = {i: SparseSeries(idx.to_int_index().indices,
sparse_index=idx, fill_value=np.nan)
for i, idx in enumerate(indices)}
# homogenized is only valid with NaN fill values
homogenized = spf.homogenize(data)
for k, v in compat.iteritems(homogenized):
assert (v.sp_index.equals(expected))
indices1 = [BlockIndex(10, [2], [7]), BlockIndex(10, [1, 6], [3, 4]),
BlockIndex(10, [0], [10])]
expected1 = BlockIndex(10, [2, 6], [2, 3])
_check_matches(indices1, expected1)
indices2 = [BlockIndex(10, [2], [7]), BlockIndex(10, [2], [7])]
expected2 = indices2[0]
_check_matches(indices2, expected2)
# must have NaN fill value
data = {'a': SparseSeries(np.arange(7), sparse_index=expected2,
fill_value=0)}
with pytest.raises(TypeError, match="NaN fill value"):
spf.homogenize(data)
def test_fill_value_corner(self):
cop = self.zbseries.copy()
cop.fill_value = 0
result = self.bseries / cop
assert np.isnan(result.fill_value)
cop2 = self.zbseries.copy()
cop2.fill_value = 1
result = cop2 / cop
# 1 / 0 is inf
assert np.isinf(result.fill_value)
def test_fill_value_when_combine_const(self):
# GH12723
s = SparseSeries([0, 1, np.nan, 3, 4, 5], index=np.arange(6))
exp = s.fillna(0).add(2)
res = s.add(2, fill_value=0)
tm.assert_series_equal(res, exp)
def test_shift(self):
series = SparseSeries([nan, 1., 2., 3., nan, nan], index=np.arange(6))
shifted = series.shift(0)
# assert shifted is not series
tm.assert_sp_series_equal(shifted, series)
f = lambda s: s.shift(1)
_dense_series_compare(series, f)
f = lambda s: s.shift(-2)
_dense_series_compare(series, f)
series = SparseSeries([nan, 1., 2., 3., nan, nan],
index=bdate_range('1/1/2000', periods=6))
f = lambda s: s.shift(2, freq='B')
_dense_series_compare(series, f)
f = lambda s: s.shift(2, freq=BDay())
_dense_series_compare(series, f)
def test_shift_nan(self):
# GH 12908
orig = pd.Series([np.nan, 2, np.nan, 4, 0, np.nan, 0])
sparse = orig.to_sparse()
tm.assert_sp_series_equal(sparse.shift(0), orig.shift(0).to_sparse(),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(1), orig.shift(1).to_sparse(),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(2), orig.shift(2).to_sparse(),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(3), orig.shift(3).to_sparse(),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(-1), orig.shift(-1).to_sparse())
tm.assert_sp_series_equal(sparse.shift(-2), orig.shift(-2).to_sparse())
tm.assert_sp_series_equal(sparse.shift(-3), orig.shift(-3).to_sparse())
tm.assert_sp_series_equal(sparse.shift(-4), orig.shift(-4).to_sparse())
sparse = orig.to_sparse(fill_value=0)
tm.assert_sp_series_equal(
sparse.shift(0),
orig.shift(0).to_sparse(fill_value=sparse.fill_value)
)
tm.assert_sp_series_equal(sparse.shift(1),
orig.shift(1).to_sparse(fill_value=0),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(2),
orig.shift(2).to_sparse(fill_value=0),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(3),
orig.shift(3).to_sparse(fill_value=0),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(-1),
orig.shift(-1).to_sparse(fill_value=0),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(-2),
orig.shift(-2).to_sparse(fill_value=0),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(-3),
orig.shift(-3).to_sparse(fill_value=0),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(-4),
orig.shift(-4).to_sparse(fill_value=0),
check_kind=False)
def test_shift_dtype(self):
# GH 12908
orig = pd.Series([1, 2, 3, 4], dtype=np.int64)
sparse = orig.to_sparse()
tm.assert_sp_series_equal(sparse.shift(0), orig.shift(0).to_sparse())
sparse = orig.to_sparse(fill_value=np.nan)
tm.assert_sp_series_equal(sparse.shift(0),
orig.shift(0).to_sparse(fill_value=np.nan))
# shift(1) or more span changes dtype to float64
# XXX: SparseSeries doesn't need to shift dtype here.
# Do we want to astype in shift, for backwards compat?
# If not, document it.
tm.assert_sp_series_equal(sparse.shift(1).astype('f8'),
orig.shift(1).to_sparse(kind='integer'))
tm.assert_sp_series_equal(sparse.shift(2).astype('f8'),
orig.shift(2).to_sparse(kind='integer'))
tm.assert_sp_series_equal(sparse.shift(3).astype('f8'),
orig.shift(3).to_sparse(kind='integer'))
tm.assert_sp_series_equal(sparse.shift(-1).astype('f8'),
orig.shift(-1).to_sparse(),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(-2).astype('f8'),
orig.shift(-2).to_sparse(),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(-3).astype('f8'),
orig.shift(-3).to_sparse(),
check_kind=False)
tm.assert_sp_series_equal(sparse.shift(-4).astype('f8'),
orig.shift(-4).to_sparse(),
check_kind=False)
@pytest.mark.parametrize("fill_value", [
0,
1,
np.nan
])
@pytest.mark.parametrize("periods", [0, 1, 2, 3, -1, -2, -3, -4])
def test_shift_dtype_fill_value(self, fill_value, periods):