|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +from pandas import compat |
| 3 | + |
| 4 | +from distutils.version import LooseVersion |
| 5 | +from numpy import nan |
| 6 | +import numpy as np |
| 7 | + |
| 8 | +from pandas import Series, DataFrame |
| 9 | + |
| 10 | +from pandas.compat import product |
| 11 | +from pandas.util.testing import (assert_frame_equal, assert_series_equal) |
| 12 | +import pandas.util.testing as tm |
| 13 | + |
| 14 | + |
| 15 | +class TestRank(tm.TestCase): |
| 16 | + s = Series([1, 3, 4, 2, nan, 2, 1, 5, nan, 3]) |
| 17 | + df = DataFrame({'A': s, 'B': s}) |
| 18 | + |
| 19 | + results = { |
| 20 | + 'average': np.array([1.5, 5.5, 7.0, 3.5, nan, |
| 21 | + 3.5, 1.5, 8.0, nan, 5.5]), |
| 22 | + 'min': np.array([1, 5, 7, 3, nan, 3, 1, 8, nan, 5]), |
| 23 | + 'max': np.array([2, 6, 7, 4, nan, 4, 2, 8, nan, 6]), |
| 24 | + 'first': np.array([1, 5, 7, 3, nan, 4, 2, 8, nan, 6]), |
| 25 | + 'dense': np.array([1, 3, 4, 2, nan, 2, 1, 5, nan, 3]), |
| 26 | + } |
| 27 | + |
| 28 | + def test_rank_tie_methods(self): |
| 29 | + s = self.s |
| 30 | + |
| 31 | + def _check(s, expected, method='average'): |
| 32 | + result = s.rank(method=method) |
| 33 | + tm.assert_series_equal(result, Series(expected)) |
| 34 | + |
| 35 | + dtypes = [None, object] |
| 36 | + disabled = set([(object, 'first')]) |
| 37 | + results = self.results |
| 38 | + |
| 39 | + for method, dtype in product(results, dtypes): |
| 40 | + if (dtype, method) in disabled: |
| 41 | + continue |
| 42 | + series = s if dtype is None else s.astype(dtype) |
| 43 | + _check(series, results[method], method=method) |
| 44 | + |
| 45 | + def test_rank_methods_series(self): |
| 46 | + tm.skip_if_no_package('scipy', '0.13', 'scipy.stats.rankdata') |
| 47 | + import scipy |
| 48 | + from scipy.stats import rankdata |
| 49 | + |
| 50 | + xs = np.random.randn(9) |
| 51 | + xs = np.concatenate([xs[i:] for i in range(0, 9, 2)]) # add duplicates |
| 52 | + np.random.shuffle(xs) |
| 53 | + |
| 54 | + index = [chr(ord('a') + i) for i in range(len(xs))] |
| 55 | + |
| 56 | + for vals in [xs, xs + 1e6, xs * 1e-6]: |
| 57 | + ts = Series(vals, index=index) |
| 58 | + |
| 59 | + for m in ['average', 'min', 'max', 'first', 'dense']: |
| 60 | + result = ts.rank(method=m) |
| 61 | + sprank = rankdata(vals, m if m != 'first' else 'ordinal') |
| 62 | + expected = Series(sprank, index=index) |
| 63 | + |
| 64 | + if LooseVersion(scipy.__version__) >= '0.17.0': |
| 65 | + expected = expected.astype('float64') |
| 66 | + tm.assert_series_equal(result, expected) |
| 67 | + |
| 68 | + def test_rank_methods_frame(self): |
| 69 | + tm.skip_if_no_package('scipy', '0.13', 'scipy.stats.rankdata') |
| 70 | + import scipy |
| 71 | + from scipy.stats import rankdata |
| 72 | + |
| 73 | + xs = np.random.randint(0, 21, (100, 26)) |
| 74 | + xs = (xs - 10.0) / 10.0 |
| 75 | + cols = [chr(ord('z') - i) for i in range(xs.shape[1])] |
| 76 | + |
| 77 | + for vals in [xs, xs + 1e6, xs * 1e-6]: |
| 78 | + df = DataFrame(vals, columns=cols) |
| 79 | + |
| 80 | + for ax in [0, 1]: |
| 81 | + for m in ['average', 'min', 'max', 'first', 'dense']: |
| 82 | + result = df.rank(axis=ax, method=m) |
| 83 | + sprank = np.apply_along_axis( |
| 84 | + rankdata, ax, vals, |
| 85 | + m if m != 'first' else 'ordinal') |
| 86 | + sprank = sprank.astype(np.float64) |
| 87 | + expected = DataFrame(sprank, columns=cols) |
| 88 | + |
| 89 | + if LooseVersion(scipy.__version__) >= '0.17.0': |
| 90 | + expected = expected.astype('float64') |
| 91 | + tm.assert_frame_equal(result, expected) |
| 92 | + |
| 93 | + def test_rank_dense_method(self): |
| 94 | + dtypes = ['O', 'f8', 'i8'] |
| 95 | + in_out = [([1], [1]), |
| 96 | + ([2], [1]), |
| 97 | + ([0], [1]), |
| 98 | + ([2, 2], [1, 1]), |
| 99 | + ([1, 2, 3], [1, 2, 3]), |
| 100 | + ([4, 2, 1], [3, 2, 1],), |
| 101 | + ([1, 1, 5, 5, 3], [1, 1, 3, 3, 2]), |
| 102 | + ([-5, -4, -3, -2, -1], [1, 2, 3, 4, 5])] |
| 103 | + |
| 104 | + for ser, exp in in_out: |
| 105 | + for dtype in dtypes: |
| 106 | + s = Series(ser).astype(dtype) |
| 107 | + result = s.rank(method='dense') |
| 108 | + expected = Series(exp).astype(result.dtype) |
| 109 | + assert_series_equal(result, expected) |
| 110 | + |
| 111 | + # GH15630, pct should be on 100% basis even when method='dense' |
| 112 | + in_out = [([1], [1.]), |
| 113 | + ([2], [1.]), |
| 114 | + ([0], [1.]), |
| 115 | + ([2, 2], [1., 1.1]), |
| 116 | + ([1, 2, 3], [1. / 3, 2. / 3, 3. / 3]), |
| 117 | + ([4, 2, 1], [3. / 3, 2. / 3, 1. / 3],), |
| 118 | + ([1, 1, 5, 5, 3], [1. / 3, 1. / 3, 3. / 3, 3. / 3, 2. / 3]), |
| 119 | + ([-5, -4, -3, -2, -1], |
| 120 | + [1. / 5, 2. / 5, 3. / 5, 4. / 5, 5. / 5])] |
| 121 | + |
| 122 | + for ser, exp in in_out: |
| 123 | + for dtype in dtypes: |
| 124 | + s = Series(ser).astype(dtype) |
| 125 | + result = s.rank(method='dense', pct=True) |
| 126 | + expected = Series(exp).astype(result.dtype) |
| 127 | + assert_series_equal(result, expected) |
| 128 | + |
| 129 | + df = DataFrame([['2012', 'B', 3], ['2012', 'A', 2], ['2012', 'A', 1]]) |
| 130 | + result = df.rank(method='dense', pct=True) |
| 131 | + expected = DataFrame([[1., 1., 1.], |
| 132 | + [1., 0.5, 2. / 3], |
| 133 | + [1., 0.5, 1. / 3]]) |
| 134 | + assert_frame_equal(result, expected) |
| 135 | + |
| 136 | + def test_rank_descending(self): |
| 137 | + dtypes = ['O', 'f8', 'i8'] |
| 138 | + |
| 139 | + for dtype, method in product(dtypes, self.results): |
| 140 | + if 'i' in dtype: |
| 141 | + s = self.s.dropna() |
| 142 | + df = self.df.dropna() |
| 143 | + else: |
| 144 | + s = self.s.astype(dtype) |
| 145 | + df = self.df.astype(dtype) |
| 146 | + |
| 147 | + res = s.rank(ascending=False) |
| 148 | + expected = (s.max() - s).rank() |
| 149 | + assert_series_equal(res, expected) |
| 150 | + |
| 151 | + res = df.rank(ascending=False) |
| 152 | + expected = (df.max() - df).rank() |
| 153 | + assert_frame_equal(res, expected) |
| 154 | + |
| 155 | + if method == 'first' and dtype == 'O': |
| 156 | + continue |
| 157 | + |
| 158 | + expected = (s.max() - s).rank(method=method) |
| 159 | + res2 = s.rank(method=method, ascending=False) |
| 160 | + assert_series_equal(res2, expected) |
| 161 | + |
| 162 | + expected = (df.max() - df).rank(method=method) |
| 163 | + |
| 164 | + if dtype != 'O': |
| 165 | + res2 = df.rank(method=method, ascending=False, |
| 166 | + numeric_only=True) |
| 167 | + assert_frame_equal(res2, expected) |
| 168 | + |
| 169 | + res3 = df.rank(method=method, ascending=False, |
| 170 | + numeric_only=False) |
| 171 | + assert_frame_equal(res3, expected) |
| 172 | + |
| 173 | + def test_rank_2d_tie_methods(self): |
| 174 | + df = self.df |
| 175 | + |
| 176 | + def _check2d(df, expected, method='average', axis=0): |
| 177 | + exp_df = DataFrame({'A': expected, 'B': expected}) |
| 178 | + |
| 179 | + if axis == 1: |
| 180 | + df = df.T |
| 181 | + exp_df = exp_df.T |
| 182 | + |
| 183 | + result = df.rank(method=method, axis=axis) |
| 184 | + assert_frame_equal(result, exp_df) |
| 185 | + |
| 186 | + dtypes = [None, object] |
| 187 | + disabled = set([(object, 'first')]) |
| 188 | + results = self.results |
| 189 | + |
| 190 | + for method, axis, dtype in product(results, [0, 1], dtypes): |
| 191 | + if (dtype, method) in disabled: |
| 192 | + continue |
| 193 | + frame = df if dtype is None else df.astype(dtype) |
| 194 | + _check2d(frame, results[method], method=method, axis=axis) |
| 195 | + |
| 196 | + def test_rank_int(self): |
| 197 | + s = self.s.dropna().astype('i8') |
| 198 | + |
| 199 | + for method, res in compat.iteritems(self.results): |
| 200 | + result = s.rank(method=method) |
| 201 | + expected = Series(res).dropna() |
| 202 | + expected.index = result.index |
| 203 | + assert_series_equal(result, expected) |
| 204 | + |
| 205 | + def test_rank_object_bug(self): |
| 206 | + # GH 13445 |
| 207 | + |
| 208 | + # smoke tests |
| 209 | + Series([np.nan] * 32).astype(object).rank(ascending=True) |
| 210 | + Series([np.nan] * 32).astype(object).rank(ascending=False) |
0 commit comments