@@ -661,16 +661,13 @@ def test_replace_simple_nested_dict_with_nonexistent_value(self):
661
661
result = df .replace ({"col" : {- 1 : "-" , 1 : "a" , 4 : "b" }})
662
662
tm .assert_frame_equal (expected , result )
663
663
664
- def test_replace_numpy_nan (self ):
665
- # GH#45725 ensure np.nan can be replaced with pd.NA
666
- df = pd .DataFrame ({"A" : [np .nan ], "B" : [np .nan ]}, dtype = object )
667
- result = df .replace ({np .nan : pd .NA })
668
- expected = pd .DataFrame ({"A" : [pd .NA ], "B" : [pd .NA ]}, dtype = object )
669
- tm .assert_frame_equal (result , expected )
670
-
671
- # same thing but with None
672
- result = df .replace ({np .nan : None })
673
- expected = pd .DataFrame ({"A" : [None ], "B" : [None ]}, dtype = object )
664
+ @pytest .mark .parametrize ("dtype" , [object ])
665
+ @pytest .mark .parametrize ("to_replace, value" , [(np .nan , pd .NA ), (np .nan , None )])
666
+ def test_replace_numpy_nan (self , dtype , to_replace , value ):
667
+ # GH#45725 ensure numpy.nan can be replaced with pandas.NA or None
668
+ df = pd .DataFrame ({"A" : [to_replace ]}, dtype = dtype )
669
+ result = df .replace ({to_replace : value })
670
+ expected = pd .DataFrame ({"A" : [value ]}, dtype = dtype )
674
671
tm .assert_frame_equal (result , expected )
675
672
676
673
def test_replace_value_is_none (self , datetime_frame ):
0 commit comments