forked from aws-powertools/powertools-lambda-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
428 lines (356 loc) · 15 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
"""
Base for Parameter providers
"""
from __future__ import annotations
import base64
import json
import os
from abc import ABC, abstractmethod
from datetime import datetime, timedelta
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
NamedTuple,
Optional,
Tuple,
Type,
Union,
cast,
overload,
)
import boto3
from botocore.config import Config
from aws_lambda_powertools.shared import constants, user_agent
from aws_lambda_powertools.shared.functions import resolve_max_age
from aws_lambda_powertools.utilities.parameters.types import TransformOptions
from .exceptions import GetParameterError, TransformParameterError
if TYPE_CHECKING:
from mypy_boto3_appconfigdata import AppConfigDataClient
from mypy_boto3_dynamodb import DynamoDBServiceResource
from mypy_boto3_secretsmanager import SecretsManagerClient
from mypy_boto3_ssm import SSMClient
DEFAULT_MAX_AGE_SECS = "5"
# These providers will be dynamically initialized on first use of the helper functions
DEFAULT_PROVIDERS: Dict[str, Any] = {}
TRANSFORM_METHOD_JSON = "json"
TRANSFORM_METHOD_BINARY = "binary"
SUPPORTED_TRANSFORM_METHODS = [TRANSFORM_METHOD_JSON, TRANSFORM_METHOD_BINARY]
ParameterClients = Union["AppConfigDataClient", "SecretsManagerClient", "SSMClient"]
TRANSFORM_METHOD_MAPPING = {
TRANSFORM_METHOD_JSON: json.loads,
TRANSFORM_METHOD_BINARY: base64.b64decode,
".json": json.loads,
".binary": base64.b64decode,
None: lambda x: x,
}
class ExpirableValue(NamedTuple):
value: str | bytes | Dict[str, Any]
ttl: datetime
class BaseProvider(ABC):
"""
Abstract Base Class for Parameter providers
"""
store: Dict[Tuple[str, TransformOptions], ExpirableValue]
def __init__(self):
"""
Initialize the base provider
"""
self.store: Dict[Tuple[str, TransformOptions], ExpirableValue] = {}
def has_not_expired_in_cache(self, key: Tuple[str, TransformOptions]) -> bool:
return key in self.store and self.store[key].ttl >= datetime.now()
def get(
self,
name: str,
max_age: Optional[int] = None,
transform: TransformOptions = None,
force_fetch: bool = False,
**sdk_options,
) -> Optional[Union[str, dict, bytes]]:
"""
Retrieve a parameter value or return the cached value
Parameters
----------
name: str
Parameter name
max_age: int
Maximum age of the cached value
transform: str
Optional transformation of the parameter value. Supported values
are "json" for JSON strings and "binary" for base 64 encoded
values.
force_fetch: bool, optional
Force update even before a cached item has expired, defaults to False
sdk_options: dict, optional
Arguments that will be passed directly to the underlying API call
Raises
------
GetParameterError
When the parameter provider fails to retrieve a parameter value for
a given name.
TransformParameterError
When the parameter provider fails to transform a parameter value.
"""
# If there are multiple calls to the same parameter but in a different
# transform, they will be stored multiple times. This allows us to
# optimize by transforming the data only once per retrieval, thus there
# is no need to transform cached values multiple times. However, this
# means that we need to make multiple calls to the underlying parameter
# store if we need to return it in different transforms. Since the number
# of supported transform is small and the probability that a given
# parameter will always be used in a specific transform, this should be
# an acceptable tradeoff.
value: Optional[Union[str, bytes, dict]] = None
key = (name, transform)
# If max_age is not set, resolve it from the environment variable, defaulting to DEFAULT_MAX_AGE_SECS
max_age = resolve_max_age(env=os.getenv(constants.PARAMETERS_MAX_AGE_ENV, DEFAULT_MAX_AGE_SECS), choice=max_age)
if not force_fetch and self.has_not_expired_in_cache(key):
return self.store[key].value
try:
value = self._get(name, **sdk_options)
# Encapsulate all errors into a generic GetParameterError
except Exception as exc:
raise GetParameterError(str(exc))
if transform:
value = transform_value(key=name, value=value, transform=transform, raise_on_transform_error=True)
# NOTE: don't cache None, as they might've been failed transforms and may be corrected
if value is not None:
self.store[key] = ExpirableValue(value, datetime.now() + timedelta(seconds=max_age))
return value
@abstractmethod
def _get(self, name: str, **sdk_options) -> Union[str, bytes]:
"""
Retrieve parameter value from the underlying parameter store
"""
raise NotImplementedError()
def get_multiple(
self,
path: str,
max_age: Optional[int] = None,
transform: TransformOptions = None,
raise_on_transform_error: bool = False,
force_fetch: bool = False,
**sdk_options,
) -> Union[Dict[str, str], Dict[str, dict], Dict[str, bytes]]:
"""
Retrieve multiple parameters based on a path prefix
Parameters
----------
path: str
Parameter path used to retrieve multiple parameters
max_age: int, optional
Maximum age of the cached value
transform: str, optional
Optional transformation of the parameter value. Supported values
are "json" for JSON strings, "binary" for base 64 encoded
values or "auto" which looks at the attribute key to determine the type.
raise_on_transform_error: bool, optional
Raises an exception if any transform fails, otherwise this will
return a None value for each transform that failed
force_fetch: bool, optional
Force update even before a cached item has expired, defaults to False
sdk_options: dict, optional
Arguments that will be passed directly to the underlying API call
Raises
------
GetParameterError
When the parameter provider fails to retrieve parameter values for
a given path.
TransformParameterError
When the parameter provider fails to transform a parameter value.
"""
key = (path, transform)
# If max_age is not set, resolve it from the environment variable, defaulting to DEFAULT_MAX_AGE_SECS
max_age = resolve_max_age(env=os.getenv(constants.PARAMETERS_MAX_AGE_ENV, DEFAULT_MAX_AGE_SECS), choice=max_age)
if not force_fetch and self.has_not_expired_in_cache(key):
return self.store[key].value # type: ignore # need to revisit entire typing here
try:
values = self._get_multiple(path, **sdk_options)
# Encapsulate all errors into a generic GetParameterError
except Exception as exc:
raise GetParameterError(str(exc))
if transform:
values.update(transform_value(values, transform, raise_on_transform_error))
self.store[key] = ExpirableValue(values, datetime.now() + timedelta(seconds=max_age))
return values
@abstractmethod
def _get_multiple(self, path: str, **sdk_options) -> Dict[str, str]:
"""
Retrieve multiple parameter values from the underlying parameter store
"""
raise NotImplementedError()
def clear_cache(self):
self.store.clear()
def add_to_cache(self, key: Tuple[str, TransformOptions], value: Any, max_age: int):
if max_age <= 0:
return
self.store[key] = ExpirableValue(value, datetime.now() + timedelta(seconds=max_age))
@staticmethod
def _build_boto3_client(
service_name: str,
client: Optional[ParameterClients] = None,
session: Optional[Type[boto3.Session]] = None,
config: Optional[Type[Config]] = None,
) -> Type[ParameterClients]:
"""Builds a low level boto3 client with session and config provided
Parameters
----------
service_name : str
AWS service name to instantiate a boto3 client, e.g. ssm
client : Optional[ParameterClients], optional
boto3 client instance, by default None
session : Optional[Type[boto3.Session]], optional
boto3 session instance, by default None
config : Optional[Type[Config]], optional
botocore config instance to configure client with, by default None
Returns
-------
Type[ParameterClients]
Instance of a boto3 client for Parameters feature (e.g., ssm, appconfig, secretsmanager, etc.)
"""
if client is not None:
user_agent.register_feature_to_client(client=client, feature="parameters")
return client
session = session or boto3.Session()
config = config or Config()
client = session.client(service_name=service_name, config=config)
user_agent.register_feature_to_client(client=client, feature="parameters")
return client
# maintenance: change DynamoDBServiceResource type to ParameterResourceClients when we expand
@staticmethod
def _build_boto3_resource_client(
service_name: str,
client: Optional["DynamoDBServiceResource"] = None,
session: Optional[Type[boto3.Session]] = None,
config: Optional[Type[Config]] = None,
endpoint_url: Optional[str] = None,
) -> "DynamoDBServiceResource":
"""Builds a high level boto3 resource client with session, config and endpoint_url provided
Parameters
----------
service_name : str
AWS service name to instantiate a boto3 client, e.g. ssm
client : Optional[DynamoDBServiceResource], optional
boto3 client instance, by default None
session : Optional[Type[boto3.Session]], optional
boto3 session instance, by default None
config : Optional[Type[Config]], optional
botocore config instance to configure client, by default None
Returns
-------
Type[DynamoDBServiceResource]
Instance of a boto3 resource client for Parameters feature (e.g., dynamodb, etc.)
"""
if client is not None:
user_agent.register_feature_to_resource(resource=client, feature="parameters")
return client
session = session or boto3.Session()
config = config or Config()
client = session.resource(service_name=service_name, config=config, endpoint_url=endpoint_url)
user_agent.register_feature_to_resource(resource=client, feature="parameters")
return client
def get_transform_method(value: str, transform: TransformOptions = None) -> Callable[..., Any]:
"""
Determine the transform method
Examples
-------
>>> get_transform_method("key","any_other_value")
'any_other_value'
>>> get_transform_method("key.json","auto")
'json'
>>> get_transform_method("key.binary","auto")
'binary'
>>> get_transform_method("key","auto")
None
>>> get_transform_method("key",None)
None
Parameters
---------
value: str
Only used when the transform is "auto".
transform: str, optional
Original transform method, only "auto" will try to detect the transform method by the key
Returns
------
Callable:
Transform function could be json.loads, base64.b64decode, or a lambda that echo the str value
"""
transform_method = TRANSFORM_METHOD_MAPPING.get(transform)
if transform == "auto":
key_suffix = value.rsplit(".")[-1]
transform_method = TRANSFORM_METHOD_MAPPING.get(key_suffix, TRANSFORM_METHOD_MAPPING[None])
return cast(Callable, transform_method) # https://github.com/python/mypy/issues/10740
@overload
def transform_value(
value: Dict[str, Any],
transform: TransformOptions,
raise_on_transform_error: bool = False,
key: str = "",
) -> Dict[str, Any]:
...
@overload
def transform_value(
value: Union[str, bytes, Dict[str, Any]],
transform: TransformOptions,
raise_on_transform_error: bool = False,
key: str = "",
) -> Optional[Union[str, bytes, Dict[str, Any]]]:
...
def transform_value(
value: Union[str, bytes, Dict[str, Any]],
transform: TransformOptions,
raise_on_transform_error: bool = True,
key: str = "",
) -> Optional[Union[str, bytes, Dict[str, Any]]]:
"""
Transform a value using one of the available options.
Parameters
---------
value: str
Parameter value to transform
transform: str
Type of transform, supported values are "json", "binary", and "auto" based on suffix (.json, .binary)
key: str
Parameter key when transform is auto to infer its transform method
raise_on_transform_error: bool, optional
Raises an exception if any transform fails, otherwise this will
return a None value for each transform that failed
Raises
------
TransformParameterError:
When the parameter value could not be transformed
"""
# Maintenance: For v3, we should consider returning the original value for soft transform failures.
err_msg = "Unable to transform value using '{transform}' transform: {exc}"
if isinstance(value, bytes):
value = value.decode("utf-8")
if isinstance(value, dict):
# NOTE: We must handle partial failures when receiving multiple values
# where one of the keys might fail during transform, e.g. `{"a": "valid", "b": "{"}`
# expected: `{"a": "valid", "b": None}`
transformed_values: Dict[str, Any] = {}
for dict_key, dict_value in value.items():
transform_method = get_transform_method(value=dict_key, transform=transform)
try:
transformed_values[dict_key] = transform_method(dict_value)
except Exception as exc:
if raise_on_transform_error:
raise TransformParameterError(err_msg.format(transform=transform, exc=exc)) from exc
transformed_values[dict_key] = None
return transformed_values
if transform == "auto":
# key="a.json", value='{"a": "b"}', or key="a.binary", value="b64_encoded"
transform_method = get_transform_method(value=key, transform=transform)
else:
# value='{"key": "value"}
transform_method = get_transform_method(value=value, transform=transform)
try:
return transform_method(value)
except Exception as exc:
if raise_on_transform_error:
raise TransformParameterError(err_msg.format(transform=transform, exc=exc)) from exc
return None
def clear_caches():
"""Clear cached parameter values from all providers"""
DEFAULT_PROVIDERS.clear()