forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_indexing.py
389 lines (322 loc) · 12.2 KB
/
test_indexing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
"""
test_indexing tests the following Index methods:
__getitem__
get_loc
get_value
__contains__
take
where
get_indexer
get_indexer_for
slice_locs
asof_locs
The corresponding tests.indexes.[index_type].test_indexing files
contain tests for the corresponding methods specific to those Index subclasses.
"""
import numpy as np
import pytest
from pandas.errors import InvalidIndexError
from pandas.core.dtypes.common import (
is_float_dtype,
is_scalar,
)
from pandas import (
NA,
Categorical,
CategoricalDtype,
DatetimeIndex,
Index,
IntervalIndex,
MultiIndex,
NaT,
PeriodIndex,
Series,
TimedeltaIndex,
)
import pandas._testing as tm
class TestTake:
def test_take_invalid_kwargs(self, index):
indices = [1, 2]
msg = r"take\(\) got an unexpected keyword argument 'foo'"
with pytest.raises(TypeError, match=msg):
index.take(indices, foo=2)
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
index.take(indices, out=indices)
msg = "the 'mode' parameter is not supported"
with pytest.raises(ValueError, match=msg):
index.take(indices, mode="clip")
def test_take(self, index):
indexer = [4, 3, 0, 2]
if len(index) < 5:
pytest.skip("Test doesn't make sense since not enough elements")
result = index.take(indexer)
expected = index[indexer]
assert result.equals(expected)
if not isinstance(index, (DatetimeIndex, PeriodIndex, TimedeltaIndex)):
# GH 10791
msg = r"'(.*Index)' object has no attribute 'freq'"
with pytest.raises(AttributeError, match=msg):
index.freq
def test_take_indexer_type(self):
# GH#42875
integer_index = Index([0, 1, 2, 3])
scalar_index = 1
msg = "Expected indices to be array-like"
with pytest.raises(TypeError, match=msg):
integer_index.take(scalar_index)
def test_take_minus1_without_fill(self, index):
# -1 does not get treated as NA unless allow_fill=True is passed
if len(index) == 0:
# Test is not applicable
pytest.skip("Test doesn't make sense for empty index")
result = index.take([0, 0, -1])
expected = index.take([0, 0, len(index) - 1])
tm.assert_index_equal(result, expected)
class TestContains:
@pytest.mark.parametrize(
"index,val",
[
(Index([0, 1, 2]), 2),
(Index([0, 1, "2"]), "2"),
(Index([0, 1, 2, np.inf, 4]), 4),
(Index([0, 1, 2, np.nan, 4]), 4),
(Index([0, 1, 2, np.inf]), np.inf),
(Index([0, 1, 2, np.nan]), np.nan),
],
)
def test_index_contains(self, index, val):
assert val in index
@pytest.mark.parametrize(
"index,val",
[
(Index([0, 1, 2]), "2"),
(Index([0, 1, "2"]), 2),
(Index([0, 1, 2, np.inf]), 4),
(Index([0, 1, 2, np.nan]), 4),
(Index([0, 1, 2, np.inf]), np.nan),
(Index([0, 1, 2, np.nan]), np.inf),
# Checking if np.inf in int64 Index should not cause an OverflowError
# Related to GH 16957
(Index([0, 1, 2], dtype=np.int64), np.inf),
(Index([0, 1, 2], dtype=np.int64), np.nan),
(Index([0, 1, 2], dtype=np.uint64), np.inf),
(Index([0, 1, 2], dtype=np.uint64), np.nan),
],
)
def test_index_not_contains(self, index, val):
assert val not in index
@pytest.mark.parametrize(
"index,val", [(Index([0, 1, "2"]), 0), (Index([0, 1, "2"]), "2")]
)
def test_mixed_index_contains(self, index, val):
# GH#19860
assert val in index
@pytest.mark.parametrize(
"index,val", [(Index([0, 1, "2"]), "1"), (Index([0, 1, "2"]), 2)]
)
def test_mixed_index_not_contains(self, index, val):
# GH#19860
assert val not in index
def test_contains_with_float_index(self, any_real_numpy_dtype):
# GH#22085
dtype = any_real_numpy_dtype
data = [0, 1, 2, 3] if not is_float_dtype(dtype) else [0.1, 1.1, 2.2, 3.3]
index = Index(data, dtype=dtype)
if not is_float_dtype(index.dtype):
assert 1.1 not in index
assert 1.0 in index
assert 1 in index
else:
assert 1.1 in index
assert 1.0 not in index
assert 1 not in index
def test_contains_requires_hashable_raises(self, index):
if isinstance(index, MultiIndex):
return # TODO: do we want this to raise?
msg = "unhashable type: 'list'"
with pytest.raises(TypeError, match=msg):
[] in index
msg = "|".join(
[
r"unhashable type: 'dict'",
r"must be real number, not dict",
r"an integer is required",
r"\{\}",
r"pandas\._libs\.interval\.IntervalTree' is not iterable",
]
)
with pytest.raises(TypeError, match=msg):
{} in index._engine
class TestGetLoc:
def test_get_loc_non_hashable(self, index):
with pytest.raises(InvalidIndexError, match="[0, 1]"):
index.get_loc([0, 1])
def test_get_loc_non_scalar_hashable(self, index):
# GH52877
from enum import Enum
class E(Enum):
X1 = "x1"
assert not is_scalar(E.X1)
exc = KeyError
msg = "<E.X1: 'x1'>"
if isinstance(
index,
(
DatetimeIndex,
TimedeltaIndex,
PeriodIndex,
IntervalIndex,
),
):
# TODO: make these more consistent?
exc = InvalidIndexError
msg = "E.X1"
with pytest.raises(exc, match=msg):
index.get_loc(E.X1)
def test_get_loc_generator(self, index):
exc = KeyError
if isinstance(
index,
(
DatetimeIndex,
TimedeltaIndex,
PeriodIndex,
IntervalIndex,
MultiIndex,
),
):
# TODO: make these more consistent?
exc = InvalidIndexError
with pytest.raises(exc, match="generator object"):
# MultiIndex specifically checks for generator; others for scalar
index.get_loc(x for x in range(5))
def test_get_loc_masked_duplicated_na(self):
# GH#48411
idx = Index([1, 2, NA, NA], dtype="Int64")
result = idx.get_loc(NA)
expected = np.array([False, False, True, True])
tm.assert_numpy_array_equal(result, expected)
class TestGetIndexer:
def test_get_indexer_base(self, index):
if index._index_as_unique:
expected = np.arange(index.size, dtype=np.intp)
actual = index.get_indexer(index)
tm.assert_numpy_array_equal(expected, actual)
else:
msg = "Reindexing only valid with uniquely valued Index objects"
with pytest.raises(InvalidIndexError, match=msg):
index.get_indexer(index)
with pytest.raises(ValueError, match="Invalid fill method"):
index.get_indexer(index, method="invalid")
def test_get_indexer_consistency(self, index):
# See GH#16819
if index._index_as_unique:
indexer = index.get_indexer(index[0:2])
assert isinstance(indexer, np.ndarray)
assert indexer.dtype == np.intp
else:
msg = "Reindexing only valid with uniquely valued Index objects"
with pytest.raises(InvalidIndexError, match=msg):
index.get_indexer(index[0:2])
indexer, _ = index.get_indexer_non_unique(index[0:2])
assert isinstance(indexer, np.ndarray)
assert indexer.dtype == np.intp
def test_get_indexer_masked_duplicated_na(self):
# GH#48411
idx = Index([1, 2, NA, NA], dtype="Int64")
result = idx.get_indexer_for(Index([1, NA], dtype="Int64"))
expected = np.array([0, 2, 3], dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
class TestConvertSliceIndexer:
def test_convert_almost_null_slice(self, index):
# slice with None at both ends, but not step
key = slice(None, None, "foo")
if isinstance(index, IntervalIndex):
msg = "label-based slicing with step!=1 is not supported for IntervalIndex"
with pytest.raises(ValueError, match=msg):
index._convert_slice_indexer(key, "loc")
else:
msg = "'>=' not supported between instances of 'str' and 'int'"
with pytest.raises(TypeError, match=msg):
index._convert_slice_indexer(key, "loc")
class TestPutmask:
def test_putmask_with_wrong_mask(self, index):
# GH#18368
if not len(index):
pytest.skip("Test doesn't make sense for empty index")
fill = index[0]
msg = "putmask: mask and data must be the same size"
with pytest.raises(ValueError, match=msg):
index.putmask(np.ones(len(index) + 1, np.bool_), fill)
with pytest.raises(ValueError, match=msg):
index.putmask(np.ones(len(index) - 1, np.bool_), fill)
with pytest.raises(ValueError, match=msg):
index.putmask("foo", fill)
def test_putmask_categorical():
# Check that putmask can use categorical values in various forms GH56376
index = Index([2, 1, 0], dtype="int64")
dtype = CategoricalDtype(categories=np.asarray([1, 2, 3], dtype="float64"))
value = Categorical([1.0, 2.0, 3.0], dtype=dtype)
result = index.putmask([True, True, False], value)
expected = Index([1, 2, 0], dtype="int64")
tm.assert_index_equal(result, expected)
value = Series([1.0, 2.0, 3.0], dtype=dtype)
result = index.putmask([True, True, False], value)
tm.assert_index_equal(result, expected)
value = Index([1.0, 2.0, 3.0], dtype=dtype)
result = index.putmask([True, True, False], value)
tm.assert_index_equal(result, expected)
def test_putmask_infinite_loop():
# Check that putmask won't get stuck in an infinite loop GH56376
index = Index([1, 2, 0], dtype="int64")
dtype = CategoricalDtype(categories=np.asarray([1, 2, 3], dtype="float64"))
value = Index([1.0, np.nan, 3.0], dtype=dtype)
with pytest.raises(AssertionError, match="please report a bug"):
index.putmask([True, True, False], value)
@pytest.mark.parametrize(
"idx", [Index([1, 2, 3]), Index([0.1, 0.2, 0.3]), Index(["a", "b", "c"])]
)
def test_getitem_deprecated_float(idx):
# https://github.com/pandas-dev/pandas/issues/34191
msg = "Indexing with a float is no longer supported"
with pytest.raises(IndexError, match=msg):
idx[1.0]
@pytest.mark.parametrize(
"idx,target,expected",
[
([np.nan, "var1", np.nan], [np.nan], np.array([0, 2], dtype=np.intp)),
(
[np.nan, "var1", np.nan],
[np.nan, "var1"],
np.array([0, 2, 1], dtype=np.intp),
),
(
np.array([np.nan, "var1", np.nan], dtype=object),
[np.nan],
np.array([0, 2], dtype=np.intp),
),
(
DatetimeIndex(["2020-08-05", NaT, NaT]),
[NaT],
np.array([1, 2], dtype=np.intp),
),
(["a", "b", "a", np.nan], [np.nan], np.array([3], dtype=np.intp)),
(
np.array(["b", np.nan, float("NaN"), "b"], dtype=object),
Index([np.nan], dtype=object),
np.array([1, 2], dtype=np.intp),
),
],
)
def test_get_indexer_non_unique_multiple_nans(idx, target, expected):
# GH 35392
axis = Index(idx)
actual = axis.get_indexer_for(target)
tm.assert_numpy_array_equal(actual, expected)
def test_get_indexer_non_unique_nans_in_object_dtype_target(nulls_fixture):
idx = Index([1.0, 2.0])
target = Index([1, nulls_fixture], dtype="object")
result_idx, result_missing = idx.get_indexer_non_unique(target)
tm.assert_numpy_array_equal(result_idx, np.array([0, -1], dtype=np.intp))
tm.assert_numpy_array_equal(result_missing, np.array([1], dtype=np.intp))