forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_series_apply.py
934 lines (742 loc) · 28.1 KB
/
test_series_apply.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
from collections import (
Counter,
defaultdict,
)
from itertools import chain
import numpy as np
import pytest
from pandas.core.dtypes.common import is_number
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
concat,
isna,
timedelta_range,
)
import pandas._testing as tm
from pandas.tests.apply.common import series_transform_kernels
def test_series_map_box_timedelta():
# GH#11349
ser = Series(timedelta_range("1 day 1 s", periods=5, freq="h"))
def f(x):
return x.total_seconds()
ser.map(f)
ser.apply(f)
DataFrame(ser).applymap(f)
def test_apply(datetime_series):
with np.errstate(all="ignore"):
tm.assert_series_equal(datetime_series.apply(np.sqrt), np.sqrt(datetime_series))
# element-wise apply
import math
tm.assert_series_equal(datetime_series.apply(math.exp), np.exp(datetime_series))
# empty series
s = Series(dtype=object, name="foo", index=Index([], name="bar"))
rs = s.apply(lambda x: x)
tm.assert_series_equal(s, rs)
# check all metadata (GH 9322)
assert s is not rs
assert s.index is rs.index
assert s.dtype == rs.dtype
assert s.name == rs.name
# index but no data
s = Series(index=[1, 2, 3], dtype=np.float64)
rs = s.apply(lambda x: x)
tm.assert_series_equal(s, rs)
def test_apply_same_length_inference_bug():
s = Series([1, 2])
def f(x):
return (x, x + 1)
result = s.apply(f)
expected = s.map(f)
tm.assert_series_equal(result, expected)
s = Series([1, 2, 3])
result = s.apply(f)
expected = s.map(f)
tm.assert_series_equal(result, expected)
def test_apply_dont_convert_dtype():
s = Series(np.random.randn(10))
def f(x):
return x if x > 0 else np.nan
result = s.apply(f, convert_dtype=False)
assert result.dtype == object
def test_with_string_args(datetime_series):
for arg in ["sum", "mean", "min", "max", "std"]:
result = datetime_series.apply(arg)
expected = getattr(datetime_series, arg)()
assert result == expected
def test_apply_args():
s = Series(["foo,bar"])
result = s.apply(str.split, args=(",",))
assert result[0] == ["foo", "bar"]
assert isinstance(result[0], list)
def test_series_map_box_timestamps():
# GH#2689, GH#2627
ser = Series(pd.date_range("1/1/2000", periods=10))
def func(x):
return (x.hour, x.day, x.month)
# it works!
ser.map(func)
ser.apply(func)
def test_apply_box():
# ufunc will not be boxed. Same test cases as the test_map_box
vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]
s = Series(vals)
assert s.dtype == "datetime64[ns]"
# boxed value must be Timestamp instance
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
exp = Series(["Timestamp_1_None", "Timestamp_2_None"])
tm.assert_series_equal(res, exp)
vals = [
pd.Timestamp("2011-01-01", tz="US/Eastern"),
pd.Timestamp("2011-01-02", tz="US/Eastern"),
]
s = Series(vals)
assert s.dtype == "datetime64[ns, US/Eastern]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
exp = Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"])
tm.assert_series_equal(res, exp)
# timedelta
vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")]
s = Series(vals)
assert s.dtype == "timedelta64[ns]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.days}")
exp = Series(["Timedelta_1", "Timedelta_2"])
tm.assert_series_equal(res, exp)
# period
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")]
s = Series(vals)
assert s.dtype == "Period[M]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.freqstr}")
exp = Series(["Period_M", "Period_M"])
tm.assert_series_equal(res, exp)
def test_apply_datetimetz():
values = pd.date_range("2011-01-01", "2011-01-02", freq="H").tz_localize(
"Asia/Tokyo"
)
s = Series(values, name="XX")
result = s.apply(lambda x: x + pd.offsets.Day())
exp_values = pd.date_range("2011-01-02", "2011-01-03", freq="H").tz_localize(
"Asia/Tokyo"
)
exp = Series(exp_values, name="XX")
tm.assert_series_equal(result, exp)
# change dtype
# GH 14506 : Returned dtype changed from int32 to int64
result = s.apply(lambda x: x.hour)
exp = Series(list(range(24)) + [0], name="XX", dtype=np.int64)
tm.assert_series_equal(result, exp)
# not vectorized
def f(x):
if not isinstance(x, pd.Timestamp):
raise ValueError
return str(x.tz)
result = s.map(f)
exp = Series(["Asia/Tokyo"] * 25, name="XX")
tm.assert_series_equal(result, exp)
def test_apply_categorical():
values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True)
ser = Series(values, name="XX", index=list("abcdefg"))
result = ser.apply(lambda x: x.lower())
# should be categorical dtype when the number of categories are
# the same
values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True)
exp = Series(values, name="XX", index=list("abcdefg"))
tm.assert_series_equal(result, exp)
tm.assert_categorical_equal(result.values, exp.values)
result = ser.apply(lambda x: "A")
exp = Series(["A"] * 7, name="XX", index=list("abcdefg"))
tm.assert_series_equal(result, exp)
assert result.dtype == object
@pytest.mark.parametrize("series", [["1-1", "1-1", np.NaN], ["1-1", "1-2", np.NaN]])
def test_apply_categorical_with_nan_values(series):
# GH 20714 bug fixed in: GH 24275
s = Series(series, dtype="category")
result = s.apply(lambda x: x.split("-")[0])
result = result.astype(object)
expected = Series(["1", "1", np.NaN], dtype="category")
expected = expected.astype(object)
tm.assert_series_equal(result, expected)
def test_apply_empty_integer_series_with_datetime_index():
# GH 21245
s = Series([], index=pd.date_range(start="2018-01-01", periods=0), dtype=int)
result = s.apply(lambda x: x)
tm.assert_series_equal(result, s)
def test_transform(string_series):
# transforming functions
with np.errstate(all="ignore"):
f_sqrt = np.sqrt(string_series)
f_abs = np.abs(string_series)
# ufunc
result = string_series.apply(np.sqrt)
expected = f_sqrt.copy()
tm.assert_series_equal(result, expected)
# list-like
result = string_series.apply([np.sqrt])
expected = f_sqrt.to_frame().copy()
expected.columns = ["sqrt"]
tm.assert_frame_equal(result, expected)
result = string_series.apply(["sqrt"])
tm.assert_frame_equal(result, expected)
# multiple items in list
# these are in the order as if we are applying both functions per
# series and then concatting
expected = concat([f_sqrt, f_abs], axis=1)
expected.columns = ["sqrt", "absolute"]
result = string_series.apply([np.sqrt, np.abs])
tm.assert_frame_equal(result, expected)
# dict, provide renaming
expected = concat([f_sqrt, f_abs], axis=1)
expected.columns = ["foo", "bar"]
expected = expected.unstack().rename("series")
result = string_series.apply({"foo": np.sqrt, "bar": np.abs})
tm.assert_series_equal(result.reindex_like(expected), expected)
@pytest.mark.parametrize("op", series_transform_kernels)
def test_transform_partial_failure(op, request):
# GH 35964
if op in ("ffill", "bfill", "pad", "backfill", "shift"):
request.node.add_marker(
pytest.mark.xfail(reason=f"{op} is successful on any dtype")
)
if op in ("rank", "fillna"):
pytest.skip(f"{op} doesn't raise TypeError on object")
# Using object makes most transform kernels fail
ser = Series(3 * [object])
expected = ser.transform(["shift"])
result = ser.transform([op, "shift"])
tm.assert_equal(result, expected)
expected = ser.transform({"B": "shift"})
result = ser.transform({"A": op, "B": "shift"})
tm.assert_equal(result, expected)
expected = ser.transform({"B": ["shift"]})
result = ser.transform({"A": [op], "B": ["shift"]})
tm.assert_equal(result, expected)
expected = ser.transform({"A": ["shift"], "B": [op]})
result = ser.transform({"A": [op, "shift"], "B": [op]})
tm.assert_equal(result, expected)
def test_transform_partial_failure_valueerror():
# GH 40211
match = ".*did not transform successfully and did not raise a TypeError"
def noop(x):
return x
def raising_op(_):
raise ValueError
ser = Series(3 * [object])
expected = ser.transform([noop])
with tm.assert_produces_warning(FutureWarning, match=match):
result = ser.transform([noop, raising_op])
tm.assert_equal(result, expected)
expected = ser.transform({"B": noop})
with tm.assert_produces_warning(FutureWarning, match=match):
result = ser.transform({"A": raising_op, "B": noop})
tm.assert_equal(result, expected)
expected = ser.transform({"B": [noop]})
with tm.assert_produces_warning(FutureWarning, match=match):
result = ser.transform({"A": [raising_op], "B": [noop]})
tm.assert_equal(result, expected)
expected = ser.transform({"A": [noop], "B": [noop]})
with tm.assert_produces_warning(FutureWarning, match=match, check_stacklevel=False):
result = ser.transform({"A": [noop, raising_op], "B": [noop]})
tm.assert_equal(result, expected)
def test_demo():
# demonstration tests
s = Series(range(6), dtype="int64", name="series")
result = s.agg(["min", "max"])
expected = Series([0, 5], index=["min", "max"], name="series")
tm.assert_series_equal(result, expected)
result = s.agg({"foo": "min"})
expected = Series([0], index=["foo"], name="series")
tm.assert_series_equal(result, expected)
def test_agg_apply_evaluate_lambdas_the_same(string_series):
# test that we are evaluating row-by-row first
# before vectorized evaluation
result = string_series.apply(lambda x: str(x))
expected = string_series.agg(lambda x: str(x))
tm.assert_series_equal(result, expected)
result = string_series.apply(str)
expected = string_series.agg(str)
tm.assert_series_equal(result, expected)
def test_with_nested_series(datetime_series):
# GH 2316
# .agg with a reducer and a transform, what to do
result = datetime_series.apply(lambda x: Series([x, x ** 2], index=["x", "x^2"]))
expected = DataFrame({"x": datetime_series, "x^2": datetime_series ** 2})
tm.assert_frame_equal(result, expected)
result = datetime_series.agg(lambda x: Series([x, x ** 2], index=["x", "x^2"]))
tm.assert_frame_equal(result, expected)
def test_replicate_describe(string_series):
# this also tests a result set that is all scalars
expected = string_series.describe()
result = string_series.apply(
{
"count": "count",
"mean": "mean",
"std": "std",
"min": "min",
"25%": lambda x: x.quantile(0.25),
"50%": "median",
"75%": lambda x: x.quantile(0.75),
"max": "max",
}
)
tm.assert_series_equal(result, expected)
def test_reduce(string_series):
# reductions with named functions
result = string_series.agg(["sum", "mean"])
expected = Series(
[string_series.sum(), string_series.mean()],
["sum", "mean"],
name=string_series.name,
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("how", ["agg", "apply"])
def test_non_callable_aggregates(how):
# test agg using non-callable series attributes
# GH 39116 - expand to apply
s = Series([1, 2, None])
# Calling agg w/ just a string arg same as calling s.arg
result = getattr(s, how)("size")
expected = s.size
assert result == expected
# test when mixed w/ callable reducers
result = getattr(s, how)(["size", "count", "mean"])
expected = Series({"size": 3.0, "count": 2.0, "mean": 1.5})
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"series, func, expected",
chain(
tm.get_cython_table_params(
Series(dtype=np.float64),
[
("sum", 0),
("max", np.nan),
("min", np.nan),
("all", True),
("any", False),
("mean", np.nan),
("prod", 1),
("std", np.nan),
("var", np.nan),
("median", np.nan),
],
),
tm.get_cython_table_params(
Series([np.nan, 1, 2, 3]),
[
("sum", 6),
("max", 3),
("min", 1),
("all", True),
("any", True),
("mean", 2),
("prod", 6),
("std", 1),
("var", 1),
("median", 2),
],
),
tm.get_cython_table_params(
Series("a b c".split()),
[
("sum", "abc"),
("max", "c"),
("min", "a"),
("all", "c"), # see GH12863
("any", "a"),
],
),
),
)
def test_agg_cython_table(series, func, expected):
# GH21224
# test reducing functions in
# pandas.core.base.SelectionMixin._cython_table
result = series.agg(func)
if is_number(expected):
assert np.isclose(result, expected, equal_nan=True)
else:
assert result == expected
@pytest.mark.parametrize(
"series, func, expected",
chain(
tm.get_cython_table_params(
Series(dtype=np.float64),
[
("cumprod", Series([], Index([]), dtype=np.float64)),
("cumsum", Series([], Index([]), dtype=np.float64)),
],
),
tm.get_cython_table_params(
Series([np.nan, 1, 2, 3]),
[
("cumprod", Series([np.nan, 1, 2, 6])),
("cumsum", Series([np.nan, 1, 3, 6])),
],
),
tm.get_cython_table_params(
Series("a b c".split()), [("cumsum", Series(["a", "ab", "abc"]))]
),
),
)
def test_agg_cython_table_transform(series, func, expected):
# GH21224
# test transforming functions in
# pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum)
result = series.agg(func)
tm.assert_series_equal(result, expected)
def test_series_apply_no_suffix_index():
# GH36189
s = Series([4] * 3)
result = s.apply(["sum", lambda x: x.sum(), lambda x: x.sum()])
expected = Series([12, 12, 12], index=["sum", "<lambda>", "<lambda>"])
tm.assert_series_equal(result, expected)
def test_map(datetime_series):
index, data = tm.getMixedTypeDict()
source = Series(data["B"], index=data["C"])
target = Series(data["C"][:4], index=data["D"][:4])
merged = target.map(source)
for k, v in merged.items():
assert v == source[target[k]]
# input could be a dict
merged = target.map(source.to_dict())
for k, v in merged.items():
assert v == source[target[k]]
# function
result = datetime_series.map(lambda x: x * 2)
tm.assert_series_equal(result, datetime_series * 2)
# GH 10324
a = Series([1, 2, 3, 4])
b = Series(["even", "odd", "even", "odd"], dtype="category")
c = Series(["even", "odd", "even", "odd"])
exp = Series(["odd", "even", "odd", np.nan], dtype="category")
tm.assert_series_equal(a.map(b), exp)
exp = Series(["odd", "even", "odd", np.nan])
tm.assert_series_equal(a.map(c), exp)
a = Series(["a", "b", "c", "d"])
b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(["b", "c", "d", "e"]))
c = Series([1, 2, 3, 4], index=Index(["b", "c", "d", "e"]))
exp = Series([np.nan, 1, 2, 3])
tm.assert_series_equal(a.map(b), exp)
exp = Series([np.nan, 1, 2, 3])
tm.assert_series_equal(a.map(c), exp)
a = Series(["a", "b", "c", "d"])
b = Series(
["B", "C", "D", "E"],
dtype="category",
index=pd.CategoricalIndex(["b", "c", "d", "e"]),
)
c = Series(["B", "C", "D", "E"], index=Index(["b", "c", "d", "e"]))
exp = Series(
pd.Categorical([np.nan, "B", "C", "D"], categories=["B", "C", "D", "E"])
)
tm.assert_series_equal(a.map(b), exp)
exp = Series([np.nan, "B", "C", "D"])
tm.assert_series_equal(a.map(c), exp)
def test_map_empty(index):
if isinstance(index, MultiIndex):
pytest.skip("Initializing a Series from a MultiIndex is not supported")
s = Series(index)
result = s.map({})
expected = Series(np.nan, index=s.index)
tm.assert_series_equal(result, expected)
def test_map_compat():
# related GH 8024
s = Series([True, True, False], index=[1, 2, 3])
result = s.map({True: "foo", False: "bar"})
expected = Series(["foo", "foo", "bar"], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
def test_map_int():
left = Series({"a": 1.0, "b": 2.0, "c": 3.0, "d": 4})
right = Series({1: 11, 2: 22, 3: 33})
assert left.dtype == np.float_
assert issubclass(right.dtype.type, np.integer)
merged = left.map(right)
assert merged.dtype == np.float_
assert isna(merged["d"])
assert not isna(merged["c"])
def test_map_type_inference():
s = Series(range(3))
s2 = s.map(lambda x: np.where(x == 0, 0, 1))
assert issubclass(s2.dtype.type, np.integer)
def test_map_decimal(string_series):
from decimal import Decimal
result = string_series.map(lambda x: Decimal(str(x)))
assert result.dtype == np.object_
assert isinstance(result[0], Decimal)
def test_map_na_exclusion():
s = Series([1.5, np.nan, 3, np.nan, 5])
result = s.map(lambda x: x * 2, na_action="ignore")
exp = s * 2
tm.assert_series_equal(result, exp)
def test_map_dict_with_tuple_keys():
"""
Due to new MultiIndex-ing behaviour in v0.14.0,
dicts with tuple keys passed to map were being
converted to a multi-index, preventing tuple values
from being mapped properly.
"""
# GH 18496
df = DataFrame({"a": [(1,), (2,), (3, 4), (5, 6)]})
label_mappings = {(1,): "A", (2,): "B", (3, 4): "A", (5, 6): "B"}
df["labels"] = df["a"].map(label_mappings)
df["expected_labels"] = Series(["A", "B", "A", "B"], index=df.index)
# All labels should be filled now
tm.assert_series_equal(df["labels"], df["expected_labels"], check_names=False)
def test_map_counter():
s = Series(["a", "b", "c"], index=[1, 2, 3])
counter = Counter()
counter["b"] = 5
counter["c"] += 1
result = s.map(counter)
expected = Series([0, 5, 1], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
def test_map_defaultdict():
s = Series([1, 2, 3], index=["a", "b", "c"])
default_dict = defaultdict(lambda: "blank")
default_dict[1] = "stuff"
result = s.map(default_dict)
expected = Series(["stuff", "blank", "blank"], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
def test_map_dict_na_key():
# https://github.com/pandas-dev/pandas/issues/17648
# Checks that np.nan key is appropriately mapped
s = Series([1, 2, np.nan])
expected = Series(["a", "b", "c"])
result = s.map({1: "a", 2: "b", np.nan: "c"})
tm.assert_series_equal(result, expected)
def test_map_dict_subclass_with_missing():
"""
Test Series.map with a dictionary subclass that defines __missing__,
i.e. sets a default value (GH #15999).
"""
class DictWithMissing(dict):
def __missing__(self, key):
return "missing"
s = Series([1, 2, 3])
dictionary = DictWithMissing({3: "three"})
result = s.map(dictionary)
expected = Series(["missing", "missing", "three"])
tm.assert_series_equal(result, expected)
def test_map_dict_subclass_without_missing():
class DictWithoutMissing(dict):
pass
s = Series([1, 2, 3])
dictionary = DictWithoutMissing({3: "three"})
result = s.map(dictionary)
expected = Series([np.nan, np.nan, "three"])
tm.assert_series_equal(result, expected)
def test_map_abc_mapping(non_dict_mapping_subclass):
# https://github.com/pandas-dev/pandas/issues/29733
# Check collections.abc.Mapping support as mapper for Series.map
s = Series([1, 2, 3])
not_a_dictionary = non_dict_mapping_subclass({3: "three"})
result = s.map(not_a_dictionary)
expected = Series([np.nan, np.nan, "three"])
tm.assert_series_equal(result, expected)
def test_map_abc_mapping_with_missing(non_dict_mapping_subclass):
# https://github.com/pandas-dev/pandas/issues/29733
# Check collections.abc.Mapping support as mapper for Series.map
class NonDictMappingWithMissing(non_dict_mapping_subclass):
def __missing__(key):
return "missing"
s = Series([1, 2, 3])
not_a_dictionary = NonDictMappingWithMissing({3: "three"})
result = s.map(not_a_dictionary)
# __missing__ is a dict concept, not a Mapping concept,
# so it should not change the result!
expected = Series([np.nan, np.nan, "three"])
tm.assert_series_equal(result, expected)
def test_map_box():
vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]
s = Series(vals)
assert s.dtype == "datetime64[ns]"
# boxed value must be Timestamp instance
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
exp = Series(["Timestamp_1_None", "Timestamp_2_None"])
tm.assert_series_equal(res, exp)
vals = [
pd.Timestamp("2011-01-01", tz="US/Eastern"),
pd.Timestamp("2011-01-02", tz="US/Eastern"),
]
s = Series(vals)
assert s.dtype == "datetime64[ns, US/Eastern]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
exp = Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"])
tm.assert_series_equal(res, exp)
# timedelta
vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")]
s = Series(vals)
assert s.dtype == "timedelta64[ns]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.days}")
exp = Series(["Timedelta_1", "Timedelta_2"])
tm.assert_series_equal(res, exp)
# period
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")]
s = Series(vals)
assert s.dtype == "Period[M]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.freqstr}")
exp = Series(["Period_M", "Period_M"])
tm.assert_series_equal(res, exp)
def test_map_categorical():
values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True)
s = Series(values, name="XX", index=list("abcdefg"))
result = s.map(lambda x: x.lower())
exp_values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True)
exp = Series(exp_values, name="XX", index=list("abcdefg"))
tm.assert_series_equal(result, exp)
tm.assert_categorical_equal(result.values, exp_values)
result = s.map(lambda x: "A")
exp = Series(["A"] * 7, name="XX", index=list("abcdefg"))
tm.assert_series_equal(result, exp)
assert result.dtype == object
def test_map_datetimetz():
values = pd.date_range("2011-01-01", "2011-01-02", freq="H").tz_localize(
"Asia/Tokyo"
)
s = Series(values, name="XX")
# keep tz
result = s.map(lambda x: x + pd.offsets.Day())
exp_values = pd.date_range("2011-01-02", "2011-01-03", freq="H").tz_localize(
"Asia/Tokyo"
)
exp = Series(exp_values, name="XX")
tm.assert_series_equal(result, exp)
# change dtype
# GH 14506 : Returned dtype changed from int32 to int64
result = s.map(lambda x: x.hour)
exp = Series(list(range(24)) + [0], name="XX", dtype=np.int64)
tm.assert_series_equal(result, exp)
# not vectorized
def f(x):
if not isinstance(x, pd.Timestamp):
raise ValueError
return str(x.tz)
result = s.map(f)
exp = Series(["Asia/Tokyo"] * 25, name="XX")
tm.assert_series_equal(result, exp)
@pytest.mark.parametrize(
"vals,mapping,exp",
[
(list("abc"), {np.nan: "not NaN"}, [np.nan] * 3 + ["not NaN"]),
(list("abc"), {"a": "a letter"}, ["a letter"] + [np.nan] * 3),
(list(range(3)), {0: 42}, [42] + [np.nan] * 3),
],
)
def test_map_missing_mixed(vals, mapping, exp):
# GH20495
s = Series(vals + [np.nan])
result = s.map(mapping)
tm.assert_series_equal(result, Series(exp))
@pytest.mark.parametrize(
"dti,exp",
[
(
Series([1, 2], index=pd.DatetimeIndex([0, 31536000000])),
DataFrame(np.repeat([[1, 2]], 2, axis=0), dtype="int64"),
),
(
tm.makeTimeSeries(nper=30),
DataFrame(np.repeat([[1, 2]], 30, axis=0), dtype="int64"),
),
],
)
@pytest.mark.parametrize("aware", [True, False])
def test_apply_series_on_date_time_index_aware_series(dti, exp, aware):
# GH 25959
# Calling apply on a localized time series should not cause an error
if aware:
index = dti.tz_localize("UTC").index
else:
index = dti.index
result = Series(index).apply(lambda x: Series([1, 2]))
tm.assert_frame_equal(result, exp)
def test_apply_scaler_on_date_time_index_aware_series():
# GH 25959
# Calling apply on a localized time series should not cause an error
series = tm.makeTimeSeries(nper=30).tz_localize("UTC")
result = Series(series.index).apply(lambda x: 1)
tm.assert_series_equal(result, Series(np.ones(30), dtype="int64"))
def test_map_float_to_string_precision():
# GH 13228
ser = Series(1 / 3)
result = ser.map(lambda val: str(val)).to_dict()
expected = {0: "0.3333333333333333"}
assert result == expected
def test_apply_to_timedelta():
list_of_valid_strings = ["00:00:01", "00:00:02"]
a = pd.to_timedelta(list_of_valid_strings)
b = Series(list_of_valid_strings).apply(pd.to_timedelta)
# FIXME: dont leave commented-out
# Can't compare until apply on a Series gives the correct dtype
# assert_series_equal(a, b)
list_of_strings = ["00:00:01", np.nan, pd.NaT, pd.NaT]
a = pd.to_timedelta(list_of_strings) # noqa
b = Series(list_of_strings).apply(pd.to_timedelta) # noqa
# Can't compare until apply on a Series gives the correct dtype
# assert_series_equal(a, b)
@pytest.mark.parametrize(
"ops, names",
[
([np.sum], ["sum"]),
([np.sum, np.mean], ["sum", "mean"]),
(np.array([np.sum]), ["sum"]),
(np.array([np.sum, np.mean]), ["sum", "mean"]),
],
)
@pytest.mark.parametrize("how", ["agg", "apply"])
def test_apply_listlike_reducer(string_series, ops, names, how):
# GH 39140
expected = Series({name: op(string_series) for name, op in zip(names, ops)})
expected.name = "series"
result = getattr(string_series, how)(ops)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ops",
[
{"A": np.sum},
{"A": np.sum, "B": np.mean},
Series({"A": np.sum}),
Series({"A": np.sum, "B": np.mean}),
],
)
@pytest.mark.parametrize("how", ["agg", "apply"])
def test_apply_dictlike_reducer(string_series, ops, how):
# GH 39140
expected = Series({name: op(string_series) for name, op in ops.items()})
expected.name = string_series.name
result = getattr(string_series, how)(ops)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ops, names",
[
([np.sqrt], ["sqrt"]),
([np.abs, np.sqrt], ["absolute", "sqrt"]),
(np.array([np.sqrt]), ["sqrt"]),
(np.array([np.abs, np.sqrt]), ["absolute", "sqrt"]),
],
)
def test_apply_listlike_transformer(string_series, ops, names):
# GH 39140
with np.errstate(all="ignore"):
expected = concat([op(string_series) for op in ops], axis=1)
expected.columns = names
result = string_series.apply(ops)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"ops",
[
{"A": np.sqrt},
{"A": np.sqrt, "B": np.exp},
Series({"A": np.sqrt}),
Series({"A": np.sqrt, "B": np.exp}),
],
)
def test_apply_dictlike_transformer(string_series, ops):
# GH 39140
with np.errstate(all="ignore"):
expected = concat({name: op(string_series) for name, op in ops.items()})
expected.name = string_series.name
result = string_series.apply(ops)
tm.assert_series_equal(result, expected)