forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhashtable_class_helper.pxi.in
1333 lines (1120 loc) · 43.8 KB
/
hashtable_class_helper.pxi.in
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Template for each `dtype` helper function for hashtable
WARNING: DO NOT edit .pxi FILE directly, .pxi is generated from .pxi.in
"""
{{py:
# name
complex_types = ['complex64',
'complex128']
}}
{{for name in complex_types}}
cdef kh{{name}}_t to_kh{{name}}_t({{name}}_t val) nogil:
cdef kh{{name}}_t res
res.real = val.real
res.imag = val.imag
return res
{{endfor}}
{{py:
# name
c_types = ['khcomplex128_t',
'khcomplex64_t',
'float64_t',
'float32_t',
'int64_t',
'int32_t',
'int16_t',
'int8_t',
'uint64_t',
'uint32_t',
'uint16_t',
'uint8_t']
}}
{{for c_type in c_types}}
cdef bint is_nan_{{c_type}}({{c_type}} val) nogil:
{{if c_type in {'khcomplex128_t', 'khcomplex64_t'} }}
return val.real != val.real or val.imag != val.imag
{{elif c_type in {'float64_t', 'float32_t'} }}
return val != val
{{else}}
return False
{{endif}}
{{if c_type in {'khcomplex128_t', 'khcomplex64_t', 'float64_t', 'float32_t'} }}
# are_equivalent_{{c_type}} is cimported via khash.pxd
{{else}}
cdef bint are_equivalent_{{c_type}}({{c_type}} val1, {{c_type}} val2) nogil:
return val1 == val2
{{endif}}
{{endfor}}
{{py:
# name
cimported_types = ['complex64',
'complex128',
'float32',
'float64',
'int8',
'int16',
'int32',
'int64',
'pymap',
'str',
'strbox',
'uint8',
'uint16',
'uint32',
'uint64']
}}
{{for name in cimported_types}}
from pandas._libs.khash cimport (
kh_destroy_{{name}},
kh_exist_{{name}},
kh_get_{{name}},
kh_init_{{name}},
kh_put_{{name}},
kh_resize_{{name}},
)
{{endfor}}
# ----------------------------------------------------------------------
# VectorData
# ----------------------------------------------------------------------
from pandas._libs.tslibs.util cimport get_c_string
from pandas._libs.missing cimport C_NA
{{py:
# name, dtype, c_type
# the generated StringVector is not actually used
# but is included for completeness (rather ObjectVector is used
# for uniques in hashtables)
dtypes = [('Complex128', 'complex128', 'khcomplex128_t'),
('Complex64', 'complex64', 'khcomplex64_t'),
('Float64', 'float64', 'float64_t'),
('Float32', 'float32', 'float32_t'),
('Int64', 'int64', 'int64_t'),
('Int32', 'int32', 'int32_t'),
('Int16', 'int16', 'int16_t'),
('Int8', 'int8', 'int8_t'),
('String', 'string', 'char *'),
('UInt64', 'uint64', 'uint64_t'),
('UInt32', 'uint32', 'uint32_t'),
('UInt16', 'uint16', 'uint16_t'),
('UInt8', 'uint8', 'uint8_t')]
}}
{{for name, dtype, c_type in dtypes}}
{{if dtype != 'int64'}}
# Int64VectorData is defined in the .pxd file because it is needed (indirectly)
# by IntervalTree
ctypedef struct {{name}}VectorData:
{{c_type}} *data
Py_ssize_t n, m
{{endif}}
@cython.wraparound(False)
@cython.boundscheck(False)
cdef inline void append_data_{{dtype}}({{name}}VectorData *data,
{{c_type}} x) nogil:
data.data[data.n] = x
data.n += 1
{{endfor}}
ctypedef fused vector_data:
Int64VectorData
Int32VectorData
Int16VectorData
Int8VectorData
UInt64VectorData
UInt32VectorData
UInt16VectorData
UInt8VectorData
Float64VectorData
Float32VectorData
Complex128VectorData
Complex64VectorData
StringVectorData
cdef inline bint needs_resize(vector_data *data) nogil:
return data.n == data.m
# ----------------------------------------------------------------------
# Vector
# ----------------------------------------------------------------------
cdef class Vector:
# cdef readonly:
# bint external_view_exists
def __cinit__(self):
self.external_view_exists = False
{{py:
# name, dtype, c_type
dtypes = [('Complex128', 'complex128', 'khcomplex128_t'),
('Complex64', 'complex64', 'khcomplex64_t'),
('Float64', 'float64', 'float64_t'),
('UInt64', 'uint64', 'uint64_t'),
('Int64', 'int64', 'int64_t'),
('Float32', 'float32', 'float32_t'),
('UInt32', 'uint32', 'uint32_t'),
('Int32', 'int32', 'int32_t'),
('UInt16', 'uint16', 'uint16_t'),
('Int16', 'int16', 'int16_t'),
('UInt8', 'uint8', 'uint8_t'),
('Int8', 'int8', 'int8_t')]
}}
{{for name, dtype, c_type in dtypes}}
cdef class {{name}}Vector(Vector):
# For int64 we have to put this declaration in the .pxd file;
# Int64Vector is the only one we need exposed for other cython files.
{{if dtype != 'int64'}}
cdef:
{{name}}VectorData *data
ndarray ao
{{endif}}
def __cinit__(self):
self.data = <{{name}}VectorData *>PyMem_Malloc(
sizeof({{name}}VectorData))
if not self.data:
raise MemoryError()
self.data.n = 0
self.data.m = _INIT_VEC_CAP
self.ao = np.empty(self.data.m, dtype=np.{{dtype}})
self.data.data = <{{c_type}}*>self.ao.data
cdef resize(self):
self.data.m = max(self.data.m * 4, _INIT_VEC_CAP)
self.ao.resize(self.data.m, refcheck=False)
self.data.data = <{{c_type}}*>self.ao.data
def __dealloc__(self):
if self.data is not NULL:
PyMem_Free(self.data)
self.data = NULL
def __len__(self) -> int:
return self.data.n
cpdef ndarray to_array(self):
if self.data.m != self.data.n:
if self.external_view_exists:
# should never happen
raise ValueError("should have raised on append()")
self.ao.resize(self.data.n, refcheck=False)
self.data.m = self.data.n
self.external_view_exists = True
return self.ao
cdef inline void append(self, {{c_type}} x):
if needs_resize(self.data):
if self.external_view_exists:
raise ValueError("external reference but "
"Vector.resize() needed")
self.resize()
append_data_{{dtype}}(self.data, x)
cdef extend(self, const {{c_type}}[:] x):
for i in range(len(x)):
self.append(x[i])
{{endfor}}
cdef class StringVector(Vector):
cdef:
StringVectorData *data
def __cinit__(self):
self.data = <StringVectorData *>PyMem_Malloc(sizeof(StringVectorData))
if not self.data:
raise MemoryError()
self.data.n = 0
self.data.m = _INIT_VEC_CAP
self.data.data = <char **>malloc(self.data.m * sizeof(char *))
if not self.data.data:
raise MemoryError()
cdef resize(self):
cdef:
char **orig_data
Py_ssize_t i, m
m = self.data.m
self.data.m = max(self.data.m * 4, _INIT_VEC_CAP)
orig_data = self.data.data
self.data.data = <char **>malloc(self.data.m * sizeof(char *))
if not self.data.data:
raise MemoryError()
for i in range(m):
self.data.data[i] = orig_data[i]
def __dealloc__(self):
if self.data is not NULL:
if self.data.data is not NULL:
free(self.data.data)
PyMem_Free(self.data)
self.data = NULL
def __len__(self) -> int:
return self.data.n
cpdef ndarray[object, ndim=1] to_array(self):
cdef:
ndarray ao
Py_ssize_t n
object val
ao = np.empty(self.data.n, dtype=object)
for i in range(self.data.n):
val = self.data.data[i]
ao[i] = val
self.external_view_exists = True
self.data.m = self.data.n
return ao
cdef inline void append(self, char *x):
if needs_resize(self.data):
self.resize()
append_data_string(self.data, x)
cdef extend(self, ndarray[object] x):
for i in range(len(x)):
self.append(x[i])
cdef class ObjectVector(Vector):
cdef:
PyObject **data
Py_ssize_t n, m
ndarray ao
def __cinit__(self):
self.n = 0
self.m = _INIT_VEC_CAP
self.ao = np.empty(_INIT_VEC_CAP, dtype=object)
self.data = <PyObject**>self.ao.data
def __len__(self) -> int:
return self.n
cdef inline append(self, object obj):
if self.n == self.m:
if self.external_view_exists:
raise ValueError("external reference but "
"Vector.resize() needed")
self.m = max(self.m * 2, _INIT_VEC_CAP)
self.ao.resize(self.m, refcheck=False)
self.data = <PyObject**>self.ao.data
Py_INCREF(obj)
self.data[self.n] = <PyObject*>obj
self.n += 1
cpdef ndarray[object, ndim=1] to_array(self):
if self.m != self.n:
if self.external_view_exists:
raise ValueError("should have raised on append()")
self.ao.resize(self.n, refcheck=False)
self.m = self.n
self.external_view_exists = True
return self.ao
cdef extend(self, ndarray[object] x):
for i in range(len(x)):
self.append(x[i])
# ----------------------------------------------------------------------
# HashTable
# ----------------------------------------------------------------------
cdef class HashTable:
pass
{{py:
# name, dtype, c_type, to_c_type
dtypes = [('Complex128', 'complex128', 'khcomplex128_t', 'to_khcomplex128_t'),
('Float64', 'float64', 'float64_t', ''),
('UInt64', 'uint64', 'uint64_t', ''),
('Int64', 'int64', 'int64_t', ''),
('Complex64', 'complex64', 'khcomplex64_t', 'to_khcomplex64_t'),
('Float32', 'float32', 'float32_t', ''),
('UInt32', 'uint32', 'uint32_t', ''),
('Int32', 'int32', 'int32_t', ''),
('UInt16', 'uint16', 'uint16_t', ''),
('Int16', 'int16', 'int16_t', ''),
('UInt8', 'uint8', 'uint8_t', ''),
('Int8', 'int8', 'int8_t', '')]
}}
{{for name, dtype, c_type, to_c_type in dtypes}}
cdef class {{name}}HashTable(HashTable):
def __cinit__(self, int64_t size_hint=1):
self.table = kh_init_{{dtype}}()
size_hint = min(kh_needed_n_buckets(size_hint), SIZE_HINT_LIMIT)
kh_resize_{{dtype}}(self.table, size_hint)
def __len__(self) -> int:
return self.table.size
def __dealloc__(self):
if self.table is not NULL:
kh_destroy_{{dtype}}(self.table)
self.table = NULL
def __contains__(self, object key) -> bool:
cdef:
khiter_t k
{{c_type}} ckey
ckey = {{to_c_type}}(key)
k = kh_get_{{dtype}}(self.table, ckey)
return k != self.table.n_buckets
def sizeof(self, deep: bool = False) -> int:
""" return the size of my table in bytes """
overhead = 4 * sizeof(uint32_t) + 3 * sizeof(uint32_t*)
for_flags = max(1, self.table.n_buckets >> 5) * sizeof(uint32_t)
for_pairs = self.table.n_buckets * (sizeof({{dtype}}_t) + # keys
sizeof(Py_ssize_t)) # vals
return overhead + for_flags + for_pairs
def get_state(self) -> dict[str, int]:
""" returns infos about the state of the hashtable"""
return {
'n_buckets' : self.table.n_buckets,
'size' : self.table.size,
'n_occupied' : self.table.n_occupied,
'upper_bound' : self.table.upper_bound,
}
cpdef get_item(self, {{dtype}}_t val):
# Used in core.sorting, IndexEngine.get_loc
cdef:
khiter_t k
{{c_type}} cval
cval = {{to_c_type}}(val)
k = kh_get_{{dtype}}(self.table, cval)
if k != self.table.n_buckets:
return self.table.vals[k]
else:
raise KeyError(val)
cpdef set_item(self, {{dtype}}_t key, Py_ssize_t val):
# Used in libjoin
cdef:
khiter_t k
int ret = 0
{{c_type}} ckey
ckey = {{to_c_type}}(key)
k = kh_put_{{dtype}}(self.table, ckey, &ret)
if kh_exist_{{dtype}}(self.table, k):
self.table.vals[k] = val
else:
raise KeyError(key)
{{if dtype == "int64" }}
# We only use this for int64, can reduce build size and make .pyi
# more accurate by only implementing it for int64
@cython.boundscheck(False)
def map_keys_to_values(
self, const {{dtype}}_t[:] keys, const int64_t[:] values
) -> None:
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
{{c_type}} key
khiter_t k
with nogil:
for i in range(n):
key = {{to_c_type}}(keys[i])
k = kh_put_{{dtype}}(self.table, key, &ret)
self.table.vals[k] = <Py_ssize_t>values[i]
{{endif}}
@cython.boundscheck(False)
def map_locations(self, const {{dtype}}_t[:] values) -> None:
# Used in libindex, safe_sort
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
{{c_type}} val
khiter_t k
with nogil:
for i in range(n):
val= {{to_c_type}}(values[i])
k = kh_put_{{dtype}}(self.table, val, &ret)
self.table.vals[k] = i
@cython.boundscheck(False)
def lookup(self, const {{dtype}}_t[:] values) -> ndarray:
# -> np.ndarray[np.intp]
# Used in safe_sort, IndexEngine.get_indexer
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
{{c_type}} val
khiter_t k
intp_t[::1] locs = np.empty(n, dtype=np.intp)
with nogil:
for i in range(n):
val = {{to_c_type}}(values[i])
k = kh_get_{{dtype}}(self.table, val)
if k != self.table.n_buckets:
locs[i] = self.table.vals[k]
else:
locs[i] = -1
return np.asarray(locs)
@cython.boundscheck(False)
@cython.wraparound(False)
def _unique(self, const {{dtype}}_t[:] values, {{name}}Vector uniques,
Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
object na_value=None, bint ignore_na=False,
object mask=None, bint return_inverse=False):
"""
Calculate unique values and labels (no sorting!)
Parameters
----------
values : ndarray[{{dtype}}]
Array of values of which unique will be calculated
uniques : {{name}}Vector
Vector into which uniques will be written
count_prior : Py_ssize_t, default 0
Number of existing entries in uniques
na_sentinel : Py_ssize_t, default -1
Sentinel value used for all NA-values in inverse
na_value : object, default None
Value to identify as missing. If na_value is None, then
any value "val" satisfying val != val is considered missing.
If na_value is not None, then _additionally_, any value "val"
satisfying val == na_value is considered missing.
ignore_na : bool, default False
Whether NA-values should be ignored for calculating the uniques. If
True, the labels corresponding to missing values will be set to
na_sentinel.
mask : ndarray[bool], optional
If not None, the mask is used as indicator for missing values
(True = missing, False = valid) instead of `na_value` or
condition "val != val".
return_inverse : bool, default False
Whether the mapping of the original array values to their location
in the vector of uniques should be returned.
Returns
-------
uniques : ndarray[{{dtype}}]
Unique values of input, not sorted
labels : ndarray[intp_t] (if return_inverse=True)
The labels from values to uniques
"""
cdef:
Py_ssize_t i, idx, count = count_prior, n = len(values)
intp_t[::1] labels
int ret = 0
{{c_type}} val, na_value2
khiter_t k
{{name}}VectorData *ud
bint use_na_value, use_mask
uint8_t[:] mask_values
if return_inverse:
labels = np.empty(n, dtype=np.intp)
ud = uniques.data
use_na_value = na_value is not None
use_mask = mask is not None
if use_mask:
mask_values = mask.view("uint8")
if use_na_value:
# We need this na_value2 because we want to allow users
# to *optionally* specify an NA sentinel *of the correct* type.
# We use None, to make it optional, which requires `object` type
# for the parameter. To please the compiler, we use na_value2,
# which is only used if it's *specified*.
na_value2 = {{to_c_type}}(na_value)
else:
na_value2 = {{to_c_type}}(0)
with nogil:
for i in range(n):
val = {{to_c_type}}(values[i])
if ignore_na and use_mask:
if mask_values[i]:
labels[i] = na_sentinel
continue
elif ignore_na and (
is_nan_{{c_type}}(val) or
(use_na_value and are_equivalent_{{c_type}}(val, na_value2))
):
# if missing values do not count as unique values (i.e. if
# ignore_na is True), skip the hashtable entry for them,
# and replace the corresponding label with na_sentinel
labels[i] = na_sentinel
continue
k = kh_get_{{dtype}}(self.table, val)
if k == self.table.n_buckets:
# k hasn't been seen yet
k = kh_put_{{dtype}}(self.table, val, &ret)
if needs_resize(ud):
with gil:
if uniques.external_view_exists:
raise ValueError("external reference to "
"uniques held, but "
"Vector.resize() needed")
uniques.resize()
append_data_{{dtype}}(ud, val)
if return_inverse:
self.table.vals[k] = count
labels[i] = count
count += 1
elif return_inverse:
# k falls into a previous bucket
# only relevant in case we need to construct the inverse
idx = self.table.vals[k]
labels[i] = idx
if return_inverse:
return uniques.to_array(), labels.base # .base -> underlying ndarray
return uniques.to_array()
def unique(self, const {{dtype}}_t[:] values, bint return_inverse=False):
"""
Calculate unique values and labels (no sorting!)
Parameters
----------
values : ndarray[{{dtype}}]
Array of values of which unique will be calculated
return_inverse : bool, default False
Whether the mapping of the original array values to their location
in the vector of uniques should be returned.
Returns
-------
uniques : ndarray[{{dtype}}]
Unique values of input, not sorted
labels : ndarray[intp_t] (if return_inverse)
The labels from values to uniques
"""
uniques = {{name}}Vector()
return self._unique(values, uniques, ignore_na=False,
return_inverse=return_inverse)
def factorize(self, const {{dtype}}_t[:] values, Py_ssize_t na_sentinel=-1,
object na_value=None, object mask=None, ignore_na=True):
"""
Calculate unique values and labels (no sorting!)
Missing values are not included in the "uniques" for this method.
The labels for any missing values will be set to "na_sentinel"
Parameters
----------
values : ndarray[{{dtype}}]
Array of values of which unique will be calculated
na_sentinel : Py_ssize_t, default -1
Sentinel value used for all NA-values in inverse
na_value : object, default None
Value to identify as missing. If na_value is None, then
any value "val" satisfying val != val is considered missing.
If na_value is not None, then _additionally_, any value "val"
satisfying val == na_value is considered missing.
mask : ndarray[bool], optional
If not None, the mask is used as indicator for missing values
(True = missing, False = valid) instead of `na_value` or
condition "val != val".
Returns
-------
uniques : ndarray[{{dtype}}]
Unique values of input, not sorted
labels : ndarray[intp_t]
The labels from values to uniques
"""
uniques_vector = {{name}}Vector()
return self._unique(values, uniques_vector, na_sentinel=na_sentinel,
na_value=na_value, ignore_na=ignore_na, mask=mask,
return_inverse=True)
def get_labels(self, const {{dtype}}_t[:] values, {{name}}Vector uniques,
Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
object na_value=None):
# -> np.ndarray[np.intp]
_, labels = self._unique(values, uniques, count_prior=count_prior,
na_sentinel=na_sentinel, na_value=na_value,
ignore_na=True, return_inverse=True)
return labels
{{if dtype == 'int64'}}
@cython.boundscheck(False)
def get_labels_groupby(
self, const {{dtype}}_t[:] values
) -> tuple[ndarray, ndarray]:
# tuple[np.ndarray[np.intp], np.ndarray[{{dtype}}]]
cdef:
Py_ssize_t i, n = len(values)
intp_t[::1] labels
Py_ssize_t idx, count = 0
int ret = 0
{{c_type}} val
khiter_t k
{{name}}Vector uniques = {{name}}Vector()
{{name}}VectorData *ud
labels = np.empty(n, dtype=np.intp)
ud = uniques.data
with nogil:
for i in range(n):
val = {{to_c_type}}(values[i])
# specific for groupby
if val < 0:
labels[i] = -1
continue
k = kh_get_{{dtype}}(self.table, val)
if k != self.table.n_buckets:
idx = self.table.vals[k]
labels[i] = idx
else:
k = kh_put_{{dtype}}(self.table, val, &ret)
self.table.vals[k] = count
if needs_resize(ud):
with gil:
uniques.resize()
append_data_{{dtype}}(ud, val)
labels[i] = count
count += 1
arr_uniques = uniques.to_array()
return np.asarray(labels), arr_uniques
{{endif}}
{{endfor}}
cdef class StringHashTable(HashTable):
# these by-definition *must* be strings
# or a sentinel np.nan / None missing value
na_string_sentinel = '__nan__'
def __init__(self, int64_t size_hint=1):
self.table = kh_init_str()
size_hint = min(kh_needed_n_buckets(size_hint), SIZE_HINT_LIMIT)
kh_resize_str(self.table, size_hint)
def __dealloc__(self):
if self.table is not NULL:
kh_destroy_str(self.table)
self.table = NULL
def sizeof(self, deep: bool = False) -> int:
overhead = 4 * sizeof(uint32_t) + 3 * sizeof(uint32_t*)
for_flags = max(1, self.table.n_buckets >> 5) * sizeof(uint32_t)
for_pairs = self.table.n_buckets * (sizeof(char *) + # keys
sizeof(Py_ssize_t)) # vals
return overhead + for_flags + for_pairs
def get_state(self) -> dict[str, int]:
""" returns infos about the state of the hashtable"""
return {
'n_buckets' : self.table.n_buckets,
'size' : self.table.size,
'n_occupied' : self.table.n_occupied,
'upper_bound' : self.table.upper_bound,
}
cpdef get_item(self, str val):
cdef:
khiter_t k
const char *v
v = get_c_string(val)
k = kh_get_str(self.table, v)
if k != self.table.n_buckets:
return self.table.vals[k]
else:
raise KeyError(val)
cpdef set_item(self, str key, Py_ssize_t val):
cdef:
khiter_t k
int ret = 0
const char *v
v = get_c_string(key)
k = kh_put_str(self.table, v, &ret)
if kh_exist_str(self.table, k):
self.table.vals[k] = val
else:
raise KeyError(key)
@cython.boundscheck(False)
def get_indexer(self, ndarray[object] values) -> ndarray:
# -> np.ndarray[np.intp]
cdef:
Py_ssize_t i, n = len(values)
ndarray[intp_t] labels = np.empty(n, dtype=np.intp)
intp_t *resbuf = <intp_t*>labels.data
khiter_t k
kh_str_t *table = self.table
const char *v
const char **vecs
vecs = <const char **>malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
v = get_c_string(val)
vecs[i] = v
with nogil:
for i in range(n):
k = kh_get_str(table, vecs[i])
if k != table.n_buckets:
resbuf[i] = table.vals[k]
else:
resbuf[i] = -1
free(vecs)
return labels
@cython.boundscheck(False)
def lookup(self, ndarray[object] values) -> ndarray:
# -> np.ndarray[np.intp]
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
const char *v
khiter_t k
intp_t[::1] locs = np.empty(n, dtype=np.intp)
# these by-definition *must* be strings
vecs = <const char **>malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
if isinstance(val, str):
# GH#31499 if we have a np.str_ get_c_string won't recognize
# it as a str, even though isinstance does.
v = get_c_string(<str>val)
else:
v = get_c_string(self.na_string_sentinel)
vecs[i] = v
with nogil:
for i in range(n):
v = vecs[i]
k = kh_get_str(self.table, v)
if k != self.table.n_buckets:
locs[i] = self.table.vals[k]
else:
locs[i] = -1
free(vecs)
return np.asarray(locs)
@cython.boundscheck(False)
def map_locations(self, ndarray[object] values) -> None:
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
const char *v
const char **vecs
khiter_t k
# these by-definition *must* be strings
vecs = <const char **>malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
if isinstance(val, str):
# GH#31499 if we have a np.str_ get_c_string won't recognize
# it as a str, even though isinstance does.
v = get_c_string(<str>val)
else:
v = get_c_string(self.na_string_sentinel)
vecs[i] = v
with nogil:
for i in range(n):
v = vecs[i]
k = kh_put_str(self.table, v, &ret)
self.table.vals[k] = i
free(vecs)
@cython.boundscheck(False)
@cython.wraparound(False)
def _unique(self, ndarray[object] values, ObjectVector uniques,
Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
object na_value=None, bint ignore_na=False,
bint return_inverse=False):
"""
Calculate unique values and labels (no sorting!)
Parameters
----------
values : ndarray[object]
Array of values of which unique will be calculated
uniques : ObjectVector
Vector into which uniques will be written
count_prior : Py_ssize_t, default 0
Number of existing entries in uniques
na_sentinel : Py_ssize_t, default -1
Sentinel value used for all NA-values in inverse
na_value : object, default None
Value to identify as missing. If na_value is None, then any value
that is not a string is considered missing. If na_value is
not None, then _additionally_ any value "val" satisfying
val == na_value is considered missing.
ignore_na : bool, default False
Whether NA-values should be ignored for calculating the uniques. If
True, the labels corresponding to missing values will be set to
na_sentinel.
return_inverse : bool, default False
Whether the mapping of the original array values to their location
in the vector of uniques should be returned.
Returns
-------
uniques : ndarray[object]
Unique values of input, not sorted
labels : ndarray[intp_t] (if return_inverse=True)
The labels from values to uniques
"""
cdef:
Py_ssize_t i, idx, count = count_prior, n = len(values)
intp_t[::1] labels
int64_t[::1] uindexer
int ret = 0
object val
const char *v
const char **vecs
khiter_t k
bint use_na_value
if return_inverse:
labels = np.zeros(n, dtype=np.intp)
uindexer = np.empty(n, dtype=np.int64)
use_na_value = na_value is not None
# assign pointers and pre-filter out missing (if ignore_na)
vecs = <const char **>malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
if (ignore_na
and (not isinstance(val, str)
or (use_na_value and val == na_value))):
# if missing values do not count as unique values (i.e. if
# ignore_na is True), we can skip the actual value, and
# replace the label with na_sentinel directly
labels[i] = na_sentinel
else:
# if ignore_na is False, we also stringify NaN/None/etc.
try:
v = get_c_string(<str>val)
except UnicodeEncodeError:
v = get_c_string(<str>repr(val))
vecs[i] = v
# compute
with nogil:
for i in range(n):
if ignore_na and labels[i] == na_sentinel:
# skip entries for ignored missing values (see above)
continue
v = vecs[i]
k = kh_get_str(self.table, v)
if k == self.table.n_buckets:
# k hasn't been seen yet
k = kh_put_str(self.table, v, &ret)
uindexer[count] = i
if return_inverse:
self.table.vals[k] = count
labels[i] = count
count += 1
elif return_inverse: