forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhashtable.pyi
252 lines (215 loc) · 7.25 KB
/
hashtable.pyi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from typing import (
Any,
Hashable,
Literal,
)
import numpy as np
from pandas._typing import npt
def unique_label_indices(
labels: np.ndarray, # const int64_t[:]
) -> np.ndarray: ...
class Factorizer:
count: int
uniques: Any
def __init__(self, size_hint: int) -> None: ...
def get_count(self) -> int: ...
def factorize(
self,
values: np.ndarray,
na_sentinel=...,
na_value=...,
mask=...,
) -> npt.NDArray[np.intp]: ...
class ObjectFactorizer(Factorizer):
table: PyObjectHashTable
uniques: ObjectVector
class Int64Factorizer(Factorizer):
table: Int64HashTable
uniques: Int64Vector
class UInt64Factorizer(Factorizer):
table: UInt64HashTable
uniques: UInt64Vector
class Int32Factorizer(Factorizer):
table: Int32HashTable
uniques: Int32Vector
class UInt32Factorizer(Factorizer):
table: UInt32HashTable
uniques: UInt32Vector
class Int16Factorizer(Factorizer):
table: Int16HashTable
uniques: Int16Vector
class UInt16Factorizer(Factorizer):
table: UInt16HashTable
uniques: UInt16Vector
class Int8Factorizer(Factorizer):
table: Int8HashTable
uniques: Int8Vector
class UInt8Factorizer(Factorizer):
table: UInt8HashTable
uniques: UInt8Vector
class Float64Factorizer(Factorizer):
table: Float64HashTable
uniques: Float64Vector
class Float32Factorizer(Factorizer):
table: Float32HashTable
uniques: Float32Vector
class Complex64Factorizer(Factorizer):
table: Complex64HashTable
uniques: Complex64Vector
class Complex128Factorizer(Factorizer):
table: Complex128HashTable
uniques: Complex128Vector
class Int64Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.int64]: ...
class Int32Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.int32]: ...
class Int16Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.int16]: ...
class Int8Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.int8]: ...
class UInt64Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.uint64]: ...
class UInt32Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.uint32]: ...
class UInt16Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.uint16]: ...
class UInt8Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.uint8]: ...
class Float64Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.float64]: ...
class Float32Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.float32]: ...
class Complex128Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.complex128]: ...
class Complex64Vector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.complex64]: ...
class StringVector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.object_]: ...
class ObjectVector:
def __init__(self, *args) -> None: ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.object_]: ...
class HashTable:
# NB: The base HashTable class does _not_ actually have these methods;
# we are putting them here for the sake of mypy to avoid
# reproducing them in each subclass below.
def __init__(self, size_hint: int = ..., uses_mask: bool = ...) -> None: ...
def __len__(self) -> int: ...
def __contains__(self, key: Hashable) -> bool: ...
def sizeof(self, deep: bool = ...) -> int: ...
def get_state(self) -> dict[str, int]: ...
# TODO: `val/key` type is subclass-specific
def get_item(self, val): ... # TODO: return type?
def set_item(self, key, val) -> None: ...
def get_na(self): ... # TODO: return type?
def set_na(self, val) -> None: ...
def map_locations(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
mask: npt.NDArray[np.bool_] | None = ...,
) -> None: ...
def lookup(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
mask: npt.NDArray[np.bool_] | None = ...,
) -> npt.NDArray[np.intp]: ...
def get_labels(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
uniques, # SubclassTypeVector
count_prior: int = ...,
na_sentinel: int = ...,
na_value: object = ...,
mask=...,
) -> npt.NDArray[np.intp]: ...
def unique(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
return_inverse: bool = ...,
mask=...,
) -> (
tuple[
np.ndarray, # np.ndarray[subclass-specific]
npt.NDArray[np.intp],
]
| np.ndarray
): ... # np.ndarray[subclass-specific]
def factorize(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
na_sentinel: int = ...,
na_value: object = ...,
mask=...,
ignore_na: bool = True,
) -> tuple[np.ndarray, npt.NDArray[np.intp]]: ... # np.ndarray[subclass-specific]
class Complex128HashTable(HashTable): ...
class Complex64HashTable(HashTable): ...
class Float64HashTable(HashTable): ...
class Float32HashTable(HashTable): ...
class Int64HashTable(HashTable):
# Only Int64HashTable has get_labels_groupby, map_keys_to_values
def get_labels_groupby(
self,
values: npt.NDArray[np.int64], # const int64_t[:]
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: ...
def map_keys_to_values(
self,
keys: npt.NDArray[np.int64],
values: npt.NDArray[np.int64], # const int64_t[:]
) -> None: ...
class Int32HashTable(HashTable): ...
class Int16HashTable(HashTable): ...
class Int8HashTable(HashTable): ...
class UInt64HashTable(HashTable): ...
class UInt32HashTable(HashTable): ...
class UInt16HashTable(HashTable): ...
class UInt8HashTable(HashTable): ...
class StringHashTable(HashTable): ...
class PyObjectHashTable(HashTable): ...
class IntpHashTable(HashTable): ...
def duplicated(
values: np.ndarray,
keep: Literal["last", "first", False] = ...,
mask: npt.NDArray[np.bool_] | None = ...,
) -> npt.NDArray[np.bool_]: ...
def mode(
values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = ...
) -> np.ndarray: ...
def value_count(
values: np.ndarray,
dropna: bool,
mask: npt.NDArray[np.bool_] | None = ...,
) -> tuple[np.ndarray, npt.NDArray[np.int64], int]: ... # np.ndarray[same-as-values]
# arr and values should have same dtype
def ismember(
arr: np.ndarray,
values: np.ndarray,
) -> npt.NDArray[np.bool_]: ...
def object_hash(obj) -> int: ...
def objects_are_equal(a, b) -> bool: ...