forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapi.py
313 lines (261 loc) · 7.96 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import textwrap
from typing import List, Set
from pandas._libs import NaT, lib
from pandas.errors import InvalidIndexError
import pandas.core.common as com
from pandas.core.indexes.base import (
Index,
_new_Index,
ensure_index,
ensure_index_from_sequences,
)
from pandas.core.indexes.category import CategoricalIndex
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.core.indexes.interval import IntervalIndex
from pandas.core.indexes.multi import MultiIndex
from pandas.core.indexes.numeric import (
Float64Index,
Int64Index,
NumericIndex,
UInt64Index,
)
from pandas.core.indexes.period import PeriodIndex
from pandas.core.indexes.range import RangeIndex
from pandas.core.indexes.timedeltas import TimedeltaIndex
_sort_msg = textwrap.dedent(
"""\
Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.
To accept the future behavior, pass 'sort=False'.
To retain the current behavior and silence the warning, pass 'sort=True'.
"""
)
__all__ = [
"Index",
"MultiIndex",
"NumericIndex",
"Float64Index",
"Int64Index",
"CategoricalIndex",
"IntervalIndex",
"RangeIndex",
"UInt64Index",
"InvalidIndexError",
"TimedeltaIndex",
"PeriodIndex",
"DatetimeIndex",
"_new_Index",
"NaT",
"ensure_index",
"ensure_index_from_sequences",
"get_objs_combined_axis",
"union_indexes",
"get_consensus_names",
"all_indexes_same",
]
def get_objs_combined_axis(
objs, intersect: bool = False, axis=0, sort: bool = True, copy: bool = False
) -> Index:
"""
Extract combined index: return intersection or union (depending on the
value of "intersect") of indexes on given axis, or None if all objects
lack indexes (e.g. they are numpy arrays).
Parameters
----------
objs : list
Series or DataFrame objects, may be mix of the two.
intersect : bool, default False
If True, calculate the intersection between indexes. Otherwise,
calculate the union.
axis : {0 or 'index', 1 or 'outer'}, default 0
The axis to extract indexes from.
sort : bool, default True
Whether the result index should come out sorted or not.
copy : bool, default False
If True, return a copy of the combined index.
Returns
-------
Index
"""
obs_idxes = [obj._get_axis(axis) for obj in objs]
return _get_combined_index(obs_idxes, intersect=intersect, sort=sort, copy=copy)
def _get_distinct_objs(objs: List[Index]) -> List[Index]:
"""
Return a list with distinct elements of "objs" (different ids).
Preserves order.
"""
ids: Set[int] = set()
res = []
for obj in objs:
if id(obj) not in ids:
ids.add(id(obj))
res.append(obj)
return res
def _get_combined_index(
indexes: List[Index],
intersect: bool = False,
sort: bool = False,
copy: bool = False,
) -> Index:
"""
Return the union or intersection of indexes.
Parameters
----------
indexes : list of Index or list objects
When intersect=True, do not accept list of lists.
intersect : bool, default False
If True, calculate the intersection between indexes. Otherwise,
calculate the union.
sort : bool, default False
Whether the result index should come out sorted or not.
copy : bool, default False
If True, return a copy of the combined index.
Returns
-------
Index
"""
# TODO: handle index names!
indexes = _get_distinct_objs(indexes)
if len(indexes) == 0:
index = Index([])
elif len(indexes) == 1:
index = indexes[0]
elif intersect:
index = indexes[0]
for other in indexes[1:]:
index = index.intersection(other)
else:
index = union_indexes(indexes, sort=sort)
index = ensure_index(index)
if sort:
try:
index = index.sort_values()
except TypeError:
pass
# GH 29879
if copy:
index = index.copy()
return index
def union_indexes(indexes, sort=True) -> Index:
"""
Return the union of indexes.
The behavior of sort and names is not consistent.
Parameters
----------
indexes : list of Index or list objects
sort : bool, default True
Whether the result index should come out sorted or not.
Returns
-------
Index
"""
if len(indexes) == 0:
raise AssertionError("Must have at least 1 Index to union")
if len(indexes) == 1:
result = indexes[0]
if isinstance(result, list):
result = Index(sorted(result))
return result
indexes, kind = _sanitize_and_check(indexes)
def _unique_indices(inds) -> Index:
"""
Convert indexes to lists and concatenate them, removing duplicates.
The final dtype is inferred.
Parameters
----------
inds : list of Index or list objects
Returns
-------
Index
"""
def conv(i):
if isinstance(i, Index):
i = i.tolist()
return i
return Index(lib.fast_unique_multiple_list([conv(i) for i in inds], sort=sort))
if kind == "special":
result = indexes[0]
if hasattr(result, "union_many"):
# DatetimeIndex
return result.union_many(indexes[1:])
else:
for other in indexes[1:]:
result = result.union(other)
return result
elif kind == "array":
index = indexes[0]
for other in indexes[1:]:
if not index.equals(other):
return _unique_indices(indexes)
name = get_consensus_names(indexes)[0]
if name != index.name:
index = index._shallow_copy(name=name)
return index
else: # kind='list'
return _unique_indices(indexes)
def _sanitize_and_check(indexes):
"""
Verify the type of indexes and convert lists to Index.
Cases:
- [list, list, ...]: Return ([list, list, ...], 'list')
- [list, Index, ...]: Return _sanitize_and_check([Index, Index, ...])
Lists are sorted and converted to Index.
- [Index, Index, ...]: Return ([Index, Index, ...], TYPE)
TYPE = 'special' if at least one special type, 'array' otherwise.
Parameters
----------
indexes : list of Index or list objects
Returns
-------
sanitized_indexes : list of Index or list objects
type : {'list', 'array', 'special'}
"""
kinds = list({type(index) for index in indexes})
if list in kinds:
if len(kinds) > 1:
indexes = [
Index(list(x)) if not isinstance(x, Index) else x for x in indexes
]
kinds.remove(list)
else:
return indexes, "list"
if len(kinds) > 1 or Index not in kinds:
return indexes, "special"
else:
return indexes, "array"
def get_consensus_names(indexes):
"""
Give a consensus 'names' to indexes.
If there's exactly one non-empty 'names', return this,
otherwise, return empty.
Parameters
----------
indexes : list of Index objects
Returns
-------
list
A list representing the consensus 'names' found.
"""
# find the non-none names, need to tupleify to make
# the set hashable, then reverse on return
consensus_names = {tuple(i.names) for i in indexes if com.any_not_none(*i.names)}
if len(consensus_names) == 1:
return list(list(consensus_names)[0])
return [None] * indexes[0].nlevels
def all_indexes_same(indexes):
"""
Determine if all indexes contain the same elements.
Parameters
----------
indexes : iterable of Index objects
Returns
-------
bool
True if all indexes contain the same elements, False otherwise.
"""
itr = iter(indexes)
first = next(itr)
for index in itr:
if not first.equals(index):
return False
return True