forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_frame_transform.py
270 lines (212 loc) · 8.71 KB
/
test_frame_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import operator
import numpy as np
import pytest
from pandas import (
DataFrame,
MultiIndex,
Series,
)
import pandas._testing as tm
from pandas.tests.apply.common import frame_transform_kernels
from pandas.tests.frame.common import zip_frames
def unpack_obj(obj, klass, axis):
"""
Helper to ensure we have the right type of object for a test parametrized
over frame_or_series.
"""
if klass is not DataFrame:
obj = obj["A"]
if axis != 0:
pytest.skip(f"Test is only for DataFrame with axis={axis}")
return obj
def test_transform_ufunc(axis, float_frame, frame_or_series):
# GH 35964
obj = unpack_obj(float_frame, frame_or_series, axis)
with np.errstate(all="ignore"):
f_sqrt = np.sqrt(obj)
# ufunc
result = obj.transform(np.sqrt, axis=axis)
expected = f_sqrt
tm.assert_equal(result, expected)
@pytest.mark.parametrize("op", frame_transform_kernels)
def test_transform_groupby_kernel(axis, float_frame, op):
# GH 35964
args = [0.0] if op == "fillna" else []
if axis == 0 or axis == "index":
ones = np.ones(float_frame.shape[0])
else:
ones = np.ones(float_frame.shape[1])
expected = float_frame.groupby(ones, axis=axis).transform(op, *args)
result = float_frame.transform(op, axis, *args)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"ops, names",
[
([np.sqrt], ["sqrt"]),
([np.abs, np.sqrt], ["absolute", "sqrt"]),
(np.array([np.sqrt]), ["sqrt"]),
(np.array([np.abs, np.sqrt]), ["absolute", "sqrt"]),
],
)
def test_transform_listlike(axis, float_frame, ops, names):
# GH 35964
other_axis = 1 if axis in {0, "index"} else 0
with np.errstate(all="ignore"):
expected = zip_frames([op(float_frame) for op in ops], axis=other_axis)
if axis in {0, "index"}:
expected.columns = MultiIndex.from_product([float_frame.columns, names])
else:
expected.index = MultiIndex.from_product([float_frame.index, names])
result = float_frame.transform(ops, axis=axis)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("ops", [[], np.array([])])
def test_transform_empty_listlike(float_frame, ops, frame_or_series):
obj = unpack_obj(float_frame, frame_or_series, 0)
with pytest.raises(ValueError, match="No transform functions were provided"):
obj.transform(ops)
@pytest.mark.parametrize("box", [dict, Series])
def test_transform_dictlike(axis, float_frame, box):
# GH 35964
if axis == 0 or axis == "index":
e = float_frame.columns[0]
expected = float_frame[[e]].transform(np.abs)
else:
e = float_frame.index[0]
expected = float_frame.iloc[[0]].transform(np.abs)
result = float_frame.transform(box({e: np.abs}), axis=axis)
tm.assert_frame_equal(result, expected)
def test_transform_dictlike_mixed():
# GH 40018 - mix of lists and non-lists in values of a dictionary
df = DataFrame({"a": [1, 2], "b": [1, 4], "c": [1, 4]})
result = df.transform({"b": ["sqrt", "abs"], "c": "sqrt"})
expected = DataFrame(
[[1.0, 1, 1.0], [2.0, 4, 2.0]],
columns=MultiIndex([("b", "c"), ("sqrt", "abs")], [(0, 0, 1), (0, 1, 0)]),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"ops",
[
{},
{"A": []},
{"A": [], "B": "cumsum"},
{"A": "cumsum", "B": []},
{"A": [], "B": ["cumsum"]},
{"A": ["cumsum"], "B": []},
],
)
def test_transform_empty_dictlike(float_frame, ops, frame_or_series):
obj = unpack_obj(float_frame, frame_or_series, 0)
with pytest.raises(ValueError, match="No transform functions were provided"):
obj.transform(ops)
@pytest.mark.parametrize("use_apply", [True, False])
def test_transform_udf(axis, float_frame, use_apply, frame_or_series):
# GH 35964
obj = unpack_obj(float_frame, frame_or_series, axis)
# transform uses UDF either via apply or passing the entire DataFrame
def func(x):
# transform is using apply iff x is not a DataFrame
if use_apply == isinstance(x, frame_or_series):
# Force transform to fallback
raise ValueError
return x + 1
result = obj.transform(func, axis=axis)
expected = obj + 1
tm.assert_equal(result, expected)
@pytest.mark.parametrize("method", ["abs", "shift", "pct_change", "cumsum", "rank"])
def test_transform_method_name(method):
# GH 19760
df = DataFrame({"A": [-1, 2]})
result = df.transform(method)
expected = operator.methodcaller(method)(df)
tm.assert_frame_equal(result, expected)
wont_fail = ["ffill", "bfill", "fillna", "pad", "backfill", "shift"]
frame_kernels_raise = [x for x in frame_transform_kernels if x not in wont_fail]
# mypy doesn't allow adding lists of different types
# https://github.com/python/mypy/issues/5492
@pytest.mark.parametrize("op", [*frame_kernels_raise, lambda x: x + 1])
def test_transform_bad_dtype(op, frame_or_series, request):
# GH 35964
if op == "rank":
request.node.add_marker(
pytest.mark.xfail(reason="GH 40418: rank does not raise a TypeError")
)
obj = DataFrame({"A": 3 * [object]}) # DataFrame that will fail on most transforms
if frame_or_series is not DataFrame:
obj = obj["A"]
# tshift is deprecated
warn = None if op != "tshift" else FutureWarning
with tm.assert_produces_warning(warn):
with pytest.raises(TypeError, match="unsupported operand|not supported"):
obj.transform(op)
with pytest.raises(TypeError, match="Transform function failed"):
obj.transform([op])
with pytest.raises(TypeError, match="Transform function failed"):
obj.transform({"A": op})
with pytest.raises(TypeError, match="Transform function failed"):
obj.transform({"A": [op]})
@pytest.mark.parametrize("op", frame_kernels_raise)
def test_transform_partial_failure_typeerror(op):
# GH 35964
if op == "rank":
pytest.skip("GH 40418: rank does not raise a TypeError")
# Using object makes most transform kernels fail
df = DataFrame({"A": 3 * [object], "B": [1, 2, 3]})
expected = df[["B"]].transform([op])
result = df.transform([op])
tm.assert_equal(result, expected)
expected = df[["B"]].transform({"B": op})
result = df.transform({"A": op, "B": op})
tm.assert_equal(result, expected)
expected = df[["B"]].transform({"B": [op]})
result = df.transform({"A": [op], "B": [op]})
tm.assert_equal(result, expected)
expected = df.transform({"A": ["shift"], "B": [op]})
result = df.transform({"A": [op, "shift"], "B": [op]})
tm.assert_equal(result, expected)
def test_transform_partial_failure_valueerror():
# GH 40211
match = ".*did not transform successfully and did not raise a TypeError"
def op(x):
if np.sum(np.sum(x)) < 10:
raise ValueError
return x
df = DataFrame({"A": [1, 2, 3], "B": [400, 500, 600]})
expected = df[["B"]].transform([op])
with tm.assert_produces_warning(FutureWarning, match=match):
result = df.transform([op])
tm.assert_equal(result, expected)
expected = df[["B"]].transform({"B": op})
with tm.assert_produces_warning(FutureWarning, match=match):
result = df.transform({"A": op, "B": op})
tm.assert_equal(result, expected)
expected = df[["B"]].transform({"B": [op]})
with tm.assert_produces_warning(FutureWarning, match=match):
result = df.transform({"A": [op], "B": [op]})
tm.assert_equal(result, expected)
expected = df.transform({"A": ["shift"], "B": [op]})
with tm.assert_produces_warning(FutureWarning, match=match, check_stacklevel=False):
result = df.transform({"A": [op, "shift"], "B": [op]})
tm.assert_equal(result, expected)
@pytest.mark.parametrize("use_apply", [True, False])
def test_transform_passes_args(use_apply, frame_or_series):
# GH 35964
# transform uses UDF either via apply or passing the entire DataFrame
expected_args = [1, 2]
expected_kwargs = {"c": 3}
def f(x, a, b, c):
# transform is using apply iff x is not a DataFrame
if use_apply == isinstance(x, frame_or_series):
# Force transform to fallback
raise ValueError
assert [a, b] == expected_args
assert c == expected_kwargs["c"]
return x
frame_or_series([1]).transform(f, 0, *expected_args, **expected_kwargs)
def test_transform_empty_dataframe():
# https://github.com/pandas-dev/pandas/issues/39636
df = DataFrame([], columns=["col1", "col2"])
result = df.transform(lambda x: x + 10)
tm.assert_frame_equal(result, df)
result = df["col1"].transform(lambda x: x + 10)
tm.assert_series_equal(result, df["col1"])