forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_cov_corr.py
396 lines (330 loc) · 14.6 KB
/
test_cov_corr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import warnings
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Series,
isna,
)
import pandas._testing as tm
class TestDataFrameCov:
def test_cov(self, float_frame, float_string_frame):
# min_periods no NAs (corner case)
expected = float_frame.cov()
result = float_frame.cov(min_periods=len(float_frame))
tm.assert_frame_equal(expected, result)
result = float_frame.cov(min_periods=len(float_frame) + 1)
assert isna(result.values).all()
# with NAs
frame = float_frame.copy()
frame["A"][:5] = np.nan
frame["B"][5:10] = np.nan
result = frame.cov(min_periods=len(frame) - 8)
expected = frame.cov()
expected.loc["A", "B"] = np.nan
expected.loc["B", "A"] = np.nan
tm.assert_frame_equal(result, expected)
# regular
result = frame.cov()
expected = frame["A"].cov(frame["C"])
tm.assert_almost_equal(result["A"]["C"], expected)
# exclude non-numeric types
result = float_string_frame.cov()
expected = float_string_frame.loc[:, ["A", "B", "C", "D"]].cov()
tm.assert_frame_equal(result, expected)
# Single column frame
df = DataFrame(np.linspace(0.0, 1.0, 10))
result = df.cov()
expected = DataFrame(
np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns
)
tm.assert_frame_equal(result, expected)
df.loc[0] = np.nan
result = df.cov()
expected = DataFrame(
np.cov(df.values[1:].T).reshape((1, 1)),
index=df.columns,
columns=df.columns,
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("test_ddof", [None, 0, 1, 2, 3])
def test_cov_ddof(self, test_ddof):
# GH#34611
np_array1 = np.random.rand(10)
np_array2 = np.random.rand(10)
df = DataFrame({0: np_array1, 1: np_array2})
result = df.cov(ddof=test_ddof)
expected_np = np.cov(np_array1, np_array2, ddof=test_ddof)
expected = DataFrame(expected_np)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"other_column", [pd.array([1, 2, 3]), np.array([1.0, 2.0, 3.0])]
)
def test_cov_nullable_integer(self, other_column):
# https://github.com/pandas-dev/pandas/issues/33803
data = DataFrame({"a": pd.array([1, 2, None]), "b": other_column})
result = data.cov()
arr = np.array([[0.5, 0.5], [0.5, 1.0]])
expected = DataFrame(arr, columns=["a", "b"], index=["a", "b"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("numeric_only", [True, False])
def test_cov_numeric_only(self, numeric_only):
# when dtypes of pandas series are different
# then ndarray will have dtype=object,
# so it need to be properly handled
df = DataFrame({"a": [1, 0], "c": ["x", "y"]})
expected = DataFrame(0.5, index=["a"], columns=["a"])
if numeric_only:
result = df.cov(numeric_only=numeric_only)
tm.assert_frame_equal(result, expected)
else:
with pytest.raises(ValueError, match="could not convert string to float"):
df.cov(numeric_only=numeric_only)
class TestDataFrameCorr:
# DataFrame.corr(), as opposed to DataFrame.corrwith
@pytest.mark.parametrize("method", ["pearson", "kendall", "spearman"])
@td.skip_if_no_scipy
def test_corr_scipy_method(self, float_frame, method):
float_frame["A"][:5] = np.nan
float_frame["B"][5:10] = np.nan
float_frame["A"][:10] = float_frame["A"][10:20]
correls = float_frame.corr(method=method)
expected = float_frame["A"].corr(float_frame["C"], method=method)
tm.assert_almost_equal(correls["A"]["C"], expected)
# ---------------------------------------------------------------------
def test_corr_non_numeric(self, float_string_frame):
# exclude non-numeric types
result = float_string_frame.corr()
expected = float_string_frame.loc[:, ["A", "B", "C", "D"]].corr()
tm.assert_frame_equal(result, expected)
@td.skip_if_no_scipy
@pytest.mark.parametrize("meth", ["pearson", "kendall", "spearman"])
def test_corr_nooverlap(self, meth):
# nothing in common
df = DataFrame(
{
"A": [1, 1.5, 1, np.nan, np.nan, np.nan],
"B": [np.nan, np.nan, np.nan, 1, 1.5, 1],
"C": [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
}
)
rs = df.corr(meth)
assert isna(rs.loc["A", "B"])
assert isna(rs.loc["B", "A"])
assert rs.loc["A", "A"] == 1
assert rs.loc["B", "B"] == 1
assert isna(rs.loc["C", "C"])
@pytest.mark.parametrize("meth", ["pearson", "spearman"])
def test_corr_constant(self, meth):
# constant --> all NA
df = DataFrame(
{
"A": [1, 1, 1, np.nan, np.nan, np.nan],
"B": [np.nan, np.nan, np.nan, 1, 1, 1],
}
)
rs = df.corr(meth)
assert isna(rs.values).all()
@td.skip_if_no_scipy
@pytest.mark.parametrize("meth", ["pearson", "kendall", "spearman"])
def test_corr_int_and_boolean(self, meth):
# when dtypes of pandas series are different
# then ndarray will have dtype=object,
# so it need to be properly handled
df = DataFrame({"a": [True, False], "b": [1, 0]})
expected = DataFrame(np.ones((2, 2)), index=["a", "b"], columns=["a", "b"])
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore", RuntimeWarning)
result = df.corr(meth)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("method", ["cov", "corr"])
def test_corr_cov_independent_index_column(self, method):
# GH#14617
df = DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd"))
result = getattr(df, method)()
assert result.index is not result.columns
assert result.index.equals(result.columns)
def test_corr_invalid_method(self):
# GH#22298
df = DataFrame(np.random.normal(size=(10, 2)))
msg = "method must be either 'pearson', 'spearman', 'kendall', or a callable, "
with pytest.raises(ValueError, match=msg):
df.corr(method="____")
def test_corr_int(self):
# dtypes other than float64 GH#1761
df = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]})
df.cov()
df.corr()
@td.skip_if_no_scipy
@pytest.mark.parametrize(
"nullable_column", [pd.array([1, 2, 3]), pd.array([1, 2, None])]
)
@pytest.mark.parametrize(
"other_column",
[pd.array([1, 2, 3]), np.array([1.0, 2.0, 3.0]), np.array([1.0, 2.0, np.nan])],
)
@pytest.mark.parametrize("method", ["pearson", "spearman", "kendall"])
def test_corr_nullable_integer(self, nullable_column, other_column, method):
# https://github.com/pandas-dev/pandas/issues/33803
data = DataFrame({"a": nullable_column, "b": other_column})
result = data.corr(method=method)
expected = DataFrame(np.ones((2, 2)), columns=["a", "b"], index=["a", "b"])
tm.assert_frame_equal(result, expected)
def test_corr_item_cache(self):
# Check that corr does not lead to incorrect entries in item_cache
df = DataFrame({"A": range(10)})
df["B"] = range(10)[::-1]
ser = df["A"] # populate item_cache
assert len(df._mgr.arrays) == 2 # i.e. 2 blocks
_ = df.corr()
# Check that the corr didn't break link between ser and df
ser.values[0] = 99
assert df.loc[0, "A"] == 99
assert df["A"] is ser
assert df.values[0, 0] == 99
@pytest.mark.parametrize("length", [2, 20, 200, 2000])
def test_corr_for_constant_columns(self, length):
# GH: 37448
df = DataFrame(length * [[0.4, 0.1]], columns=["A", "B"])
result = df.corr()
expected = DataFrame(
{"A": [np.nan, np.nan], "B": [np.nan, np.nan]}, index=["A", "B"]
)
tm.assert_frame_equal(result, expected)
def test_calc_corr_small_numbers(self):
# GH: 37452
df = DataFrame(
{"A": [1.0e-20, 2.0e-20, 3.0e-20], "B": [1.0e-20, 2.0e-20, 3.0e-20]}
)
result = df.corr()
expected = DataFrame({"A": [1.0, 1.0], "B": [1.0, 1.0]}, index=["A", "B"])
tm.assert_frame_equal(result, expected)
@td.skip_if_no_scipy
@pytest.mark.parametrize("method", ["pearson", "spearman", "kendall"])
def test_corr_min_periods_greater_than_length(self, method):
df = DataFrame({"A": [1, 2], "B": [1, 2]})
result = df.corr(method=method, min_periods=3)
expected = DataFrame(
{"A": [np.nan, np.nan], "B": [np.nan, np.nan]}, index=["A", "B"]
)
tm.assert_frame_equal(result, expected)
@td.skip_if_no_scipy
@pytest.mark.parametrize("meth", ["pearson", "kendall", "spearman"])
@pytest.mark.parametrize("numeric_only", [True, False])
def test_corr_numeric_only(self, meth, numeric_only):
# when dtypes of pandas series are different
# then ndarray will have dtype=object,
# so it need to be properly handled
df = DataFrame({"a": [1, 0], "b": [1, 0], "c": ["x", "y"]})
expected = DataFrame(np.ones((2, 2)), index=["a", "b"], columns=["a", "b"])
if numeric_only:
result = df.corr(meth, numeric_only=numeric_only)
tm.assert_frame_equal(result, expected)
else:
with pytest.raises(ValueError, match="could not convert string to float"):
df.corr(meth, numeric_only=numeric_only)
class TestDataFrameCorrWith:
def test_corrwith(self, datetime_frame):
a = datetime_frame
noise = Series(np.random.randn(len(a)), index=a.index)
b = datetime_frame.add(noise, axis=0)
# make sure order does not matter
b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:])
del b["B"]
colcorr = a.corrwith(b, axis=0)
tm.assert_almost_equal(colcorr["A"], a["A"].corr(b["A"]))
rowcorr = a.corrwith(b, axis=1)
tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0))
dropped = a.corrwith(b, axis=0, drop=True)
tm.assert_almost_equal(dropped["A"], a["A"].corr(b["A"]))
assert "B" not in dropped
dropped = a.corrwith(b, axis=1, drop=True)
assert a.index[-1] not in dropped.index
# non time-series data
index = ["a", "b", "c", "d", "e"]
columns = ["one", "two", "three", "four"]
df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns)
df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns)
correls = df1.corrwith(df2, axis=1)
for row in index[:4]:
tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row]))
def test_corrwith_with_objects(self):
df1 = tm.makeTimeDataFrame()
df2 = tm.makeTimeDataFrame()
cols = ["A", "B", "C", "D"]
df1["obj"] = "foo"
df2["obj"] = "bar"
result = df1.corrwith(df2)
expected = df1.loc[:, cols].corrwith(df2.loc[:, cols])
tm.assert_series_equal(result, expected)
result = df1.corrwith(df2, axis=1)
expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1)
tm.assert_series_equal(result, expected)
def test_corrwith_series(self, datetime_frame):
result = datetime_frame.corrwith(datetime_frame["A"])
expected = datetime_frame.apply(datetime_frame["A"].corr)
tm.assert_series_equal(result, expected)
def test_corrwith_matches_corrcoef(self):
df1 = DataFrame(np.arange(10000), columns=["a"])
df2 = DataFrame(np.arange(10000) ** 2, columns=["a"])
c1 = df1.corrwith(df2)["a"]
c2 = np.corrcoef(df1["a"], df2["a"])[0][1]
tm.assert_almost_equal(c1, c2)
assert c1 < 1
@pytest.mark.parametrize("numeric_only", [True, False])
def test_corrwith_mixed_dtypes(self, numeric_only):
# GH#18570
df = DataFrame(
{"a": [1, 4, 3, 2], "b": [4, 6, 7, 3], "c": ["a", "b", "c", "d"]}
)
s = Series([0, 6, 7, 3])
if numeric_only:
result = df.corrwith(s, numeric_only=numeric_only)
corrs = [df["a"].corr(s), df["b"].corr(s)]
expected = Series(data=corrs, index=["a", "b"])
tm.assert_series_equal(result, expected)
else:
with pytest.raises(TypeError, match="not supported for the input types"):
df.corrwith(s, numeric_only=numeric_only)
def test_corrwith_index_intersection(self):
df1 = DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"])
df2 = DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"])
result = df1.corrwith(df2, drop=True).index.sort_values()
expected = df1.columns.intersection(df2.columns).sort_values()
tm.assert_index_equal(result, expected)
def test_corrwith_index_union(self):
df1 = DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"])
df2 = DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"])
result = df1.corrwith(df2, drop=False).index.sort_values()
expected = df1.columns.union(df2.columns).sort_values()
tm.assert_index_equal(result, expected)
def test_corrwith_dup_cols(self):
# GH#21925
df1 = DataFrame(np.vstack([np.arange(10)] * 3).T)
df2 = df1.copy()
df2 = pd.concat((df2, df2[0]), axis=1)
result = df1.corrwith(df2)
expected = Series(np.ones(4), index=[0, 0, 1, 2])
tm.assert_series_equal(result, expected)
def test_corr_numerical_instabilities(self):
# GH#45640
df = DataFrame([[0.2, 0.4], [0.4, 0.2]])
result = df.corr()
expected = DataFrame({0: [1.0, -1.0], 1: [-1.0, 1.0]})
tm.assert_frame_equal(result - 1, expected - 1, atol=1e-17)
@td.skip_if_no_scipy
def test_corrwith_spearman(self):
# GH#21925
df = DataFrame(np.random.random(size=(100, 3)))
result = df.corrwith(df**2, method="spearman")
expected = Series(np.ones(len(result)))
tm.assert_series_equal(result, expected)
@td.skip_if_no_scipy
def test_corrwith_kendall(self):
# GH#21925
df = DataFrame(np.random.random(size=(100, 3)))
result = df.corrwith(df**2, method="kendall")
expected = Series(np.ones(len(result)))
tm.assert_series_equal(result, expected)