forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_ufunc.py
123 lines (101 loc) · 4.21 KB
/
test_ufunc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
dtypes = [
"int64",
"Int64",
{"A": "int64", "B": "Int64"},
]
@pytest.mark.parametrize("dtype", dtypes)
def test_unary_unary(dtype):
# unary input, unary output
values = np.array([[-1, -1], [1, 1]], dtype="int64")
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
result = np.positive(df)
expected = pd.DataFrame(
np.positive(values), index=df.index, columns=df.columns
).astype(dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", dtypes)
def test_unary_binary(request, dtype):
# unary input, binary output
if pd.api.types.is_extension_array_dtype(dtype) or isinstance(dtype, dict):
request.node.add_marker(
pytest.mark.xfail(
reason="Extension / mixed with multiple outputs not implemented."
)
)
values = np.array([[-1, -1], [1, 1]], dtype="int64")
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
result_pandas = np.modf(df)
assert isinstance(result_pandas, tuple)
assert len(result_pandas) == 2
expected_numpy = np.modf(values)
for result, b in zip(result_pandas, expected_numpy):
expected = pd.DataFrame(b, index=df.index, columns=df.columns)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", dtypes)
def test_binary_input_dispatch_binop(dtype):
# binop ufuncs are dispatched to our dunder methods.
values = np.array([[-1, -1], [1, 1]], dtype="int64")
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
result = np.add(df, df)
expected = pd.DataFrame(
np.add(values, values), index=df.index, columns=df.columns
).astype(dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype_a", dtypes)
@pytest.mark.parametrize("dtype_b", dtypes)
def test_binary_input_aligns_columns(request, dtype_a, dtype_b):
if (
pd.api.types.is_extension_array_dtype(dtype_a)
or isinstance(dtype_a, dict)
or pd.api.types.is_extension_array_dtype(dtype_b)
or isinstance(dtype_b, dict)
):
request.node.add_marker(
pytest.mark.xfail(
reason="Extension / mixed with multiple inputs not implemented."
)
)
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}).astype(dtype_a)
if isinstance(dtype_a, dict) and isinstance(dtype_b, dict):
dtype_b["C"] = dtype_b.pop("B")
df2 = pd.DataFrame({"A": [1, 2], "C": [3, 4]}).astype(dtype_b)
result = np.heaviside(df1, df2)
expected = np.heaviside(
np.array([[1, 3, np.nan], [2, 4, np.nan]]),
np.array([[1, np.nan, 3], [2, np.nan, 4]]),
)
expected = pd.DataFrame(expected, index=[0, 1], columns=["A", "B", "C"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", dtypes)
def test_binary_input_aligns_index(request, dtype):
if pd.api.types.is_extension_array_dtype(dtype) or isinstance(dtype, dict):
request.node.add_marker(
pytest.mark.xfail(
reason="Extension / mixed with multiple inputs not implemented."
)
)
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).astype(dtype)
df2 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "c"]).astype(dtype)
result = np.heaviside(df1, df2)
expected = np.heaviside(
np.array([[1, 3], [3, 4], [np.nan, np.nan]]),
np.array([[1, 3], [np.nan, np.nan], [3, 4]]),
)
# TODO(FloatArray): this will be Float64Dtype.
expected = pd.DataFrame(expected, index=["a", "b", "c"], columns=["A", "B"])
tm.assert_frame_equal(result, expected)
def test_binary_frame_series_raises():
# We don't currently implement
df = pd.DataFrame({"A": [1, 2]})
with pytest.raises(NotImplementedError, match="logaddexp"):
np.logaddexp(df, df["A"])
with pytest.raises(NotImplementedError, match="logaddexp"):
np.logaddexp(df["A"], df)
def test_frame_outer_deprecated():
df = pd.DataFrame({"A": [1, 2]})
with tm.assert_produces_warning(FutureWarning):
np.subtract.outer(df, df)