forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrouper.py
997 lines (852 loc) · 33.4 KB
/
grouper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
"""
Provide user facing operators for doing the split part of the
split-apply-combine paradigm.
"""
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
Hashable,
final,
)
import warnings
import numpy as np
from pandas._typing import (
ArrayLike,
NDFrameT,
npt,
)
from pandas.errors import InvalidIndexError
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.cast import sanitize_to_nanoseconds
from pandas.core.dtypes.common import (
is_categorical_dtype,
is_list_like,
is_scalar,
)
import pandas.core.algorithms as algorithms
from pandas.core.arrays import (
Categorical,
ExtensionArray,
)
import pandas.core.common as com
from pandas.core.frame import DataFrame
from pandas.core.groupby import ops
from pandas.core.groupby.categorical import (
recode_for_groupby,
recode_from_groupby,
)
from pandas.core.indexes.api import (
CategoricalIndex,
Index,
MultiIndex,
)
from pandas.core.series import Series
from pandas.io.formats.printing import pprint_thing
if TYPE_CHECKING:
from pandas.core.generic import NDFrame
class Grouper:
"""
A Grouper allows the user to specify a groupby instruction for an object.
This specification will select a column via the key parameter, or if the
level and/or axis parameters are given, a level of the index of the target
object.
If `axis` and/or `level` are passed as keywords to both `Grouper` and
`groupby`, the values passed to `Grouper` take precedence.
Parameters
----------
key : str, defaults to None
Groupby key, which selects the grouping column of the target.
level : name/number, defaults to None
The level for the target index.
freq : str / frequency object, defaults to None
This will groupby the specified frequency if the target selection
(via key or level) is a datetime-like object. For full specification
of available frequencies, please see `here
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_.
axis : str, int, defaults to 0
Number/name of the axis.
sort : bool, default to False
Whether to sort the resulting labels.
closed : {'left' or 'right'}
Closed end of interval. Only when `freq` parameter is passed.
label : {'left' or 'right'}
Interval boundary to use for labeling.
Only when `freq` parameter is passed.
convention : {'start', 'end', 'e', 's'}
If grouper is PeriodIndex and `freq` parameter is passed.
base : int, default 0
Only when `freq` parameter is passed.
For frequencies that evenly subdivide 1 day, the "origin" of the
aggregated intervals. For example, for '5min' frequency, base could
range from 0 through 4. Defaults to 0.
.. deprecated:: 1.1.0
The new arguments that you should use are 'offset' or 'origin'.
loffset : str, DateOffset, timedelta object
Only when `freq` parameter is passed.
.. deprecated:: 1.1.0
loffset is only working for ``.resample(...)`` and not for
Grouper (:issue:`28302`).
However, loffset is also deprecated for ``.resample(...)``
See: :class:`DataFrame.resample`
origin : Timestamp or str, default 'start_day'
The timestamp on which to adjust the grouping. The timezone of origin must
match the timezone of the index.
If string, must be one of the following:
- 'epoch': `origin` is 1970-01-01
- 'start': `origin` is the first value of the timeseries
- 'start_day': `origin` is the first day at midnight of the timeseries
.. versionadded:: 1.1.0
- 'end': `origin` is the last value of the timeseries
- 'end_day': `origin` is the ceiling midnight of the last day
.. versionadded:: 1.3.0
offset : Timedelta or str, default is None
An offset timedelta added to the origin.
.. versionadded:: 1.1.0
dropna : bool, default True
If True, and if group keys contain NA values, NA values together with
row/column will be dropped. If False, NA values will also be treated as
the key in groups.
.. versionadded:: 1.2.0
Returns
-------
A specification for a groupby instruction
Examples
--------
Syntactic sugar for ``df.groupby('A')``
>>> df = pd.DataFrame(
... {
... "Animal": ["Falcon", "Parrot", "Falcon", "Falcon", "Parrot"],
... "Speed": [100, 5, 200, 300, 15],
... }
... )
>>> df
Animal Speed
0 Falcon 100
1 Parrot 5
2 Falcon 200
3 Falcon 300
4 Parrot 15
>>> df.groupby(pd.Grouper(key="Animal")).mean()
Speed
Animal
Falcon 200.0
Parrot 10.0
Specify a resample operation on the column 'Publish date'
>>> df = pd.DataFrame(
... {
... "Publish date": [
... pd.Timestamp("2000-01-02"),
... pd.Timestamp("2000-01-02"),
... pd.Timestamp("2000-01-09"),
... pd.Timestamp("2000-01-16")
... ],
... "ID": [0, 1, 2, 3],
... "Price": [10, 20, 30, 40]
... }
... )
>>> df
Publish date ID Price
0 2000-01-02 0 10
1 2000-01-02 1 20
2 2000-01-09 2 30
3 2000-01-16 3 40
>>> df.groupby(pd.Grouper(key="Publish date", freq="1W")).mean()
ID Price
Publish date
2000-01-02 0.5 15.0
2000-01-09 2.0 30.0
2000-01-16 3.0 40.0
If you want to adjust the start of the bins based on a fixed timestamp:
>>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00'
>>> rng = pd.date_range(start, end, freq='7min')
>>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng)
>>> ts
2000-10-01 23:30:00 0
2000-10-01 23:37:00 3
2000-10-01 23:44:00 6
2000-10-01 23:51:00 9
2000-10-01 23:58:00 12
2000-10-02 00:05:00 15
2000-10-02 00:12:00 18
2000-10-02 00:19:00 21
2000-10-02 00:26:00 24
Freq: 7T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min')).sum()
2000-10-01 23:14:00 0
2000-10-01 23:31:00 9
2000-10-01 23:48:00 21
2000-10-02 00:05:00 54
2000-10-02 00:22:00 24
Freq: 17T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min', origin='epoch')).sum()
2000-10-01 23:18:00 0
2000-10-01 23:35:00 18
2000-10-01 23:52:00 27
2000-10-02 00:09:00 39
2000-10-02 00:26:00 24
Freq: 17T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min', origin='2000-01-01')).sum()
2000-10-01 23:24:00 3
2000-10-01 23:41:00 15
2000-10-01 23:58:00 45
2000-10-02 00:15:00 45
Freq: 17T, dtype: int64
If you want to adjust the start of the bins with an `offset` Timedelta, the two
following lines are equivalent:
>>> ts.groupby(pd.Grouper(freq='17min', origin='start')).sum()
2000-10-01 23:30:00 9
2000-10-01 23:47:00 21
2000-10-02 00:04:00 54
2000-10-02 00:21:00 24
Freq: 17T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min', offset='23h30min')).sum()
2000-10-01 23:30:00 9
2000-10-01 23:47:00 21
2000-10-02 00:04:00 54
2000-10-02 00:21:00 24
Freq: 17T, dtype: int64
To replace the use of the deprecated `base` argument, you can now use `offset`,
in this example it is equivalent to have `base=2`:
>>> ts.groupby(pd.Grouper(freq='17min', offset='2min')).sum()
2000-10-01 23:16:00 0
2000-10-01 23:33:00 9
2000-10-01 23:50:00 36
2000-10-02 00:07:00 39
2000-10-02 00:24:00 24
Freq: 17T, dtype: int64
"""
axis: int
sort: bool
dropna: bool
_gpr_index: Index | None
_grouper: Index | None
_attributes: tuple[str, ...] = ("key", "level", "freq", "axis", "sort", "dropna")
def __new__(cls, *args, **kwargs):
if kwargs.get("freq") is not None:
from pandas.core.resample import TimeGrouper
_check_deprecated_resample_kwargs(kwargs, origin=cls)
cls = TimeGrouper
return super().__new__(cls)
def __init__(
self,
key=None,
level=None,
freq=None,
axis: int = 0,
sort: bool = False,
dropna: bool = True,
) -> None:
self.key = key
self.level = level
self.freq = freq
self.axis = axis
self.sort = sort
self.dropna = dropna
self.grouper = None
self._gpr_index = None
self.obj = None
self.indexer = None
self.binner = None
self._grouper = None
self._indexer = None
@final
@property
def ax(self) -> Index:
index = self._gpr_index
if index is None:
raise ValueError("_set_grouper must be called before ax is accessed")
return index
def _get_grouper(
self, obj: NDFrameT, validate: bool = True
) -> tuple[Any, ops.BaseGrouper, NDFrameT]:
"""
Parameters
----------
obj : Series or DataFrame
validate : bool, default True
if True, validate the grouper
Returns
-------
a tuple of binner, grouper, obj (possibly sorted)
"""
self._set_grouper(obj)
# error: Value of type variable "NDFrameT" of "get_grouper" cannot be
# "Optional[Any]"
# error: Incompatible types in assignment (expression has type "BaseGrouper",
# variable has type "None")
self.grouper, _, self.obj = get_grouper( # type: ignore[type-var,assignment]
self.obj,
[self.key],
axis=self.axis,
level=self.level,
sort=self.sort,
validate=validate,
dropna=self.dropna,
)
# error: Incompatible return value type (got "Tuple[None, None, None]",
# expected "Tuple[Any, BaseGrouper, NDFrameT]")
return self.binner, self.grouper, self.obj # type: ignore[return-value]
@final
def _set_grouper(self, obj: NDFrame, sort: bool = False) -> None:
"""
given an object and the specifications, setup the internal grouper
for this particular specification
Parameters
----------
obj : Series or DataFrame
sort : bool, default False
whether the resulting grouper should be sorted
"""
assert obj is not None
if self.key is not None and self.level is not None:
raise ValueError("The Grouper cannot specify both a key and a level!")
# Keep self.grouper value before overriding
if self._grouper is None:
# TODO: What are we assuming about subsequent calls?
self._grouper = self._gpr_index
self._indexer = self.indexer
# the key must be a valid info item
if self.key is not None:
key = self.key
# The 'on' is already defined
if getattr(self._gpr_index, "name", None) == key and isinstance(
obj, Series
):
# Sometimes self._grouper will have been resorted while
# obj has not. In this case there is a mismatch when we
# call self._grouper.take(obj.index) so we need to undo the sorting
# before we call _grouper.take.
assert self._grouper is not None
if self._indexer is not None:
reverse_indexer = self._indexer.argsort()
unsorted_ax = self._grouper.take(reverse_indexer)
ax = unsorted_ax.take(obj.index)
else:
ax = self._grouper.take(obj.index)
else:
if key not in obj._info_axis:
raise KeyError(f"The grouper name {key} is not found")
ax = Index(obj[key], name=key)
else:
ax = obj._get_axis(self.axis)
if self.level is not None:
level = self.level
# if a level is given it must be a mi level or
# equivalent to the axis name
if isinstance(ax, MultiIndex):
level = ax._get_level_number(level)
ax = Index(ax._get_level_values(level), name=ax.names[level])
else:
if level not in (0, ax.name):
raise ValueError(f"The level {level} is not valid")
# possibly sort
if (self.sort or sort) and not ax.is_monotonic_increasing:
# use stable sort to support first, last, nth
# TODO: why does putting na_position="first" fix datetimelike cases?
indexer = self.indexer = ax.array.argsort(
kind="mergesort", na_position="first"
)
ax = ax.take(indexer)
obj = obj.take(indexer, axis=self.axis)
# error: Incompatible types in assignment (expression has type
# "NDFrameT", variable has type "None")
self.obj = obj # type: ignore[assignment]
self._gpr_index = ax
@final
@property
def groups(self):
# error: "None" has no attribute "groups"
return self.grouper.groups # type: ignore[attr-defined]
@final
def __repr__(self) -> str:
attrs_list = (
f"{attr_name}={repr(getattr(self, attr_name))}"
for attr_name in self._attributes
if getattr(self, attr_name) is not None
)
attrs = ", ".join(attrs_list)
cls_name = type(self).__name__
return f"{cls_name}({attrs})"
@final
class Grouping:
"""
Holds the grouping information for a single key
Parameters
----------
index : Index
grouper :
obj : DataFrame or Series
name : Label
level :
observed : bool, default False
If we are a Categorical, use the observed values
in_axis : if the Grouping is a column in self.obj and hence among
Groupby.exclusions list
Returns
-------
**Attributes**:
* indices : dict of {group -> index_list}
* codes : ndarray, group codes
* group_index : unique groups
* groups : dict of {group -> label_list}
"""
_codes: npt.NDArray[np.signedinteger] | None = None
_group_index: Index | None = None
_passed_categorical: bool
_all_grouper: Categorical | None
_index: Index
def __init__(
self,
index: Index,
grouper=None,
obj: NDFrame | None = None,
level=None,
sort: bool = True,
observed: bool = False,
in_axis: bool = False,
dropna: bool = True,
) -> None:
self.level = level
self._orig_grouper = grouper
self.grouping_vector = _convert_grouper(index, grouper)
self._all_grouper = None
self._index = index
self._sort = sort
self.obj = obj
self._observed = observed
self.in_axis = in_axis
self._dropna = dropna
self._passed_categorical = False
# we have a single grouper which may be a myriad of things,
# some of which are dependent on the passing in level
ilevel = self._ilevel
if ilevel is not None:
mapper = self.grouping_vector
# In extant tests, the new self.grouping_vector matches
# `index.get_level_values(ilevel)` whenever
# mapper is None and isinstance(index, MultiIndex)
(
self.grouping_vector, # Index
self._codes,
self._group_index,
) = index._get_grouper_for_level(mapper, level=ilevel, dropna=dropna)
# a passed Grouper like, directly get the grouper in the same way
# as single grouper groupby, use the group_info to get codes
elif isinstance(self.grouping_vector, Grouper):
# get the new grouper; we already have disambiguated
# what key/level refer to exactly, don't need to
# check again as we have by this point converted these
# to an actual value (rather than a pd.Grouper)
assert self.obj is not None # for mypy
_, newgrouper, newobj = self.grouping_vector._get_grouper(
self.obj, validate=False
)
self.obj = newobj
ng = newgrouper._get_grouper()
if isinstance(newgrouper, ops.BinGrouper):
# in this case we have `ng is newgrouper`
self.grouping_vector = ng
else:
# ops.BaseGrouper
# use Index instead of ndarray so we can recover the name
self.grouping_vector = Index(ng, name=newgrouper.result_index.name)
elif is_categorical_dtype(self.grouping_vector):
# a passed Categorical
self._passed_categorical = True
self.grouping_vector, self._all_grouper = recode_for_groupby(
self.grouping_vector, sort, observed
)
elif not isinstance(
self.grouping_vector, (Series, Index, ExtensionArray, np.ndarray)
):
# no level passed
if getattr(self.grouping_vector, "ndim", 1) != 1:
t = self.name or str(type(self.grouping_vector))
raise ValueError(f"Grouper for '{t}' not 1-dimensional")
self.grouping_vector = index.map(self.grouping_vector)
if not (
hasattr(self.grouping_vector, "__len__")
and len(self.grouping_vector) == len(index)
):
grper = pprint_thing(self.grouping_vector)
errmsg = (
"Grouper result violates len(labels) == "
f"len(data)\nresult: {grper}"
)
self.grouping_vector = None # Try for sanity
raise AssertionError(errmsg)
if isinstance(self.grouping_vector, np.ndarray):
# if we have a date/time-like grouper, make sure that we have
# Timestamps like
self.grouping_vector = sanitize_to_nanoseconds(self.grouping_vector)
def __repr__(self) -> str:
return f"Grouping({self.name})"
def __iter__(self):
return iter(self.indices)
@cache_readonly
def name(self) -> Hashable:
ilevel = self._ilevel
if ilevel is not None:
return self._index.names[ilevel]
if isinstance(self._orig_grouper, (Index, Series)):
return self._orig_grouper.name
elif isinstance(self.grouping_vector, ops.BaseGrouper):
return self.grouping_vector.result_index.name
elif isinstance(self.grouping_vector, Index):
return self.grouping_vector.name
# otherwise we have ndarray or ExtensionArray -> no name
return None
@cache_readonly
def _ilevel(self) -> int | None:
"""
If necessary, converted index level name to index level position.
"""
level = self.level
if level is None:
return None
if not isinstance(level, int):
index = self._index
if level not in index.names:
raise AssertionError(f"Level {level} not in index")
return index.names.index(level)
return level
@property
def ngroups(self) -> int:
return len(self.group_index)
@cache_readonly
def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]:
# we have a list of groupers
if isinstance(self.grouping_vector, ops.BaseGrouper):
return self.grouping_vector.indices
values = Categorical(self.grouping_vector)
return values._reverse_indexer()
@property
def codes(self) -> npt.NDArray[np.signedinteger]:
if self._codes is not None:
# _codes is set in __init__ for MultiIndex cases
return self._codes
return self._codes_and_uniques[0]
@cache_readonly
def group_arraylike(self) -> ArrayLike:
"""
Analogous to result_index, but holding an ArrayLike to ensure
we can retain ExtensionDtypes.
"""
if self._group_index is not None:
# _group_index is set in __init__ for MultiIndex cases
return self._group_index._values
elif self._all_grouper is not None:
# retain dtype for categories, including unobserved ones
return self.result_index._values
return self._codes_and_uniques[1]
@cache_readonly
def result_index(self) -> Index:
# result_index retains dtype for categories, including unobserved ones,
# which group_index does not
if self._all_grouper is not None:
group_idx = self.group_index
assert isinstance(group_idx, CategoricalIndex)
return recode_from_groupby(self._all_grouper, self._sort, group_idx)
return self.group_index
@cache_readonly
def group_index(self) -> Index:
if self._group_index is not None:
# _group_index is set in __init__ for MultiIndex cases
return self._group_index
uniques = self._codes_and_uniques[1]
return Index._with_infer(uniques, name=self.name)
@cache_readonly
def _codes_and_uniques(self) -> tuple[npt.NDArray[np.signedinteger], ArrayLike]:
if self._dropna and self._passed_categorical:
# we make a CategoricalIndex out of the cat grouper
# preserving the categories / ordered attributes;
# doesn't (yet - GH#46909) handle dropna=False
cat = self.grouping_vector
categories = cat.categories
if self._observed:
ucodes = algorithms.unique1d(cat.codes)
ucodes = ucodes[ucodes != -1]
if self._sort or cat.ordered:
ucodes = np.sort(ucodes)
else:
ucodes = np.arange(len(categories))
uniques = Categorical.from_codes(
codes=ucodes, categories=categories, ordered=cat.ordered
)
return cat.codes, uniques
elif isinstance(self.grouping_vector, ops.BaseGrouper):
# we have a list of groupers
codes = self.grouping_vector.codes_info
# error: Incompatible types in assignment (expression has type "Union
# [ExtensionArray, ndarray[Any, Any]]", variable has type "Categorical")
uniques = (
self.grouping_vector.result_index._values # type: ignore[assignment]
)
else:
# GH35667, replace dropna=False with use_na_sentinel=False
# error: Incompatible types in assignment (expression has type "Union[
# ndarray[Any, Any], Index]", variable has type "Categorical")
codes, uniques = algorithms.factorize( # type: ignore[assignment]
self.grouping_vector, sort=self._sort, use_na_sentinel=self._dropna
)
return codes, uniques
@cache_readonly
def groups(self) -> dict[Hashable, np.ndarray]:
return self._index.groupby(Categorical.from_codes(self.codes, self.group_index))
def get_grouper(
obj: NDFrameT,
key=None,
axis: int = 0,
level=None,
sort: bool = True,
observed: bool = False,
mutated: bool = False,
validate: bool = True,
dropna: bool = True,
) -> tuple[ops.BaseGrouper, frozenset[Hashable], NDFrameT]:
"""
Create and return a BaseGrouper, which is an internal
mapping of how to create the grouper indexers.
This may be composed of multiple Grouping objects, indicating
multiple groupers
Groupers are ultimately index mappings. They can originate as:
index mappings, keys to columns, functions, or Groupers
Groupers enable local references to axis,level,sort, while
the passed in axis, level, and sort are 'global'.
This routine tries to figure out what the passing in references
are and then creates a Grouping for each one, combined into
a BaseGrouper.
If observed & we have a categorical grouper, only show the observed
values.
If validate, then check for key/level overlaps.
"""
group_axis = obj._get_axis(axis)
# validate that the passed single level is compatible with the passed
# axis of the object
if level is not None:
# TODO: These if-block and else-block are almost same.
# MultiIndex instance check is removable, but it seems that there are
# some processes only for non-MultiIndex in else-block,
# eg. `obj.index.name != level`. We have to consider carefully whether
# these are applicable for MultiIndex. Even if these are applicable,
# we need to check if it makes no side effect to subsequent processes
# on the outside of this condition.
# (GH 17621)
if isinstance(group_axis, MultiIndex):
if is_list_like(level) and len(level) == 1:
level = level[0]
if key is None and is_scalar(level):
# Get the level values from group_axis
key = group_axis.get_level_values(level)
level = None
else:
# allow level to be a length-one list-like object
# (e.g., level=[0])
# GH 13901
if is_list_like(level):
nlevels = len(level)
if nlevels == 1:
level = level[0]
elif nlevels == 0:
raise ValueError("No group keys passed!")
else:
raise ValueError("multiple levels only valid with MultiIndex")
if isinstance(level, str):
if obj._get_axis(axis).name != level:
raise ValueError(
f"level name {level} is not the name "
f"of the {obj._get_axis_name(axis)}"
)
elif level > 0 or level < -1:
raise ValueError("level > 0 or level < -1 only valid with MultiIndex")
# NOTE: `group_axis` and `group_axis.get_level_values(level)`
# are same in this section.
level = None
key = group_axis
# a passed-in Grouper, directly convert
if isinstance(key, Grouper):
binner, grouper, obj = key._get_grouper(obj, validate=False)
if key.key is None:
return grouper, frozenset(), obj
else:
return grouper, frozenset({key.key}), obj
# already have a BaseGrouper, just return it
elif isinstance(key, ops.BaseGrouper):
return key, frozenset(), obj
if not isinstance(key, list):
keys = [key]
match_axis_length = False
else:
keys = key
match_axis_length = len(keys) == len(group_axis)
# what are we after, exactly?
any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
any_groupers = any(isinstance(g, (Grouper, Grouping)) for g in keys)
any_arraylike = any(
isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys
)
# is this an index replacement?
if (
not any_callable
and not any_arraylike
and not any_groupers
and match_axis_length
and level is None
):
if isinstance(obj, DataFrame):
all_in_columns_index = all(
g in obj.columns or g in obj.index.names for g in keys
)
else:
assert isinstance(obj, Series)
all_in_columns_index = all(g in obj.index.names for g in keys)
if not all_in_columns_index:
keys = [com.asarray_tuplesafe(keys)]
if isinstance(level, (tuple, list)):
if key is None:
keys = [None] * len(level)
levels = level
else:
levels = [level] * len(keys)
groupings: list[Grouping] = []
exclusions: set[Hashable] = set()
# if the actual grouper should be obj[key]
def is_in_axis(key) -> bool:
if not _is_label_like(key):
if obj.ndim == 1:
return False
# items -> .columns for DataFrame, .index for Series
items = obj.axes[-1]
try:
items.get_loc(key)
except (KeyError, TypeError, InvalidIndexError):
# TypeError shows up here if we pass e.g. Int64Index
return False
return True
# if the grouper is obj[name]
def is_in_obj(gpr) -> bool:
if not hasattr(gpr, "name"):
return False
try:
return gpr is obj[gpr.name]
except (KeyError, IndexError, InvalidIndexError):
# IndexError reached in e.g. test_skip_group_keys when we pass
# lambda here
# InvalidIndexError raised on key-types inappropriate for index,
# e.g. DatetimeIndex.get_loc(tuple())
return False
for gpr, level in zip(keys, levels):
if is_in_obj(gpr): # df.groupby(df['name'])
in_axis = True
exclusions.add(gpr.name)
elif is_in_axis(gpr): # df.groupby('name')
if gpr in obj:
if validate:
obj._check_label_or_level_ambiguity(gpr, axis=axis)
in_axis, name, gpr = True, gpr, obj[gpr]
if gpr.ndim != 1:
# non-unique columns; raise here to get the name in the
# exception message
raise ValueError(f"Grouper for '{name}' not 1-dimensional")
exclusions.add(name)
elif obj._is_level_reference(gpr, axis=axis):
in_axis, level, gpr = False, gpr, None
else:
raise KeyError(gpr)
elif isinstance(gpr, Grouper) and gpr.key is not None:
# Add key to exclusions
exclusions.add(gpr.key)
in_axis = False
else:
in_axis = False
# create the Grouping
# allow us to passing the actual Grouping as the gpr
ping = (
Grouping(
group_axis,
gpr,
obj=obj,
level=level,
sort=sort,
observed=observed,
in_axis=in_axis,
dropna=dropna,
)
if not isinstance(gpr, Grouping)
else gpr
)
groupings.append(ping)
if len(groupings) == 0 and len(obj):
raise ValueError("No group keys passed!")
elif len(groupings) == 0:
groupings.append(Grouping(Index([], dtype="int"), np.array([], dtype=np.intp)))
# create the internals grouper
grouper = ops.BaseGrouper(
group_axis, groupings, sort=sort, mutated=mutated, dropna=dropna
)
return grouper, frozenset(exclusions), obj
def _is_label_like(val) -> bool:
return isinstance(val, (str, tuple)) or (val is not None and is_scalar(val))
def _convert_grouper(axis: Index, grouper):
if isinstance(grouper, dict):
return grouper.get
elif isinstance(grouper, Series):
if grouper.index.equals(axis):
return grouper._values
else:
return grouper.reindex(axis)._values
elif isinstance(grouper, MultiIndex):
return grouper._values
elif isinstance(grouper, (list, tuple, Index, Categorical, np.ndarray)):
if len(grouper) != len(axis):
raise ValueError("Grouper and axis must be same length")
if isinstance(grouper, (list, tuple)):
grouper = com.asarray_tuplesafe(grouper)
return grouper
else:
return grouper
def _check_deprecated_resample_kwargs(kwargs, origin):
"""
Check for use of deprecated parameters in ``resample`` and related functions.
Raises the appropriate warnings if these parameters are detected.
Only sets an approximate ``stacklevel`` for the warnings (see #37603, #36629).
Parameters
----------
kwargs : dict
Dictionary of keyword arguments to check for deprecated parameters.
origin : object
From where this function is being called; either Grouper or TimeGrouper. Used
to determine an approximate stacklevel.
"""
# Deprecation warning of `base` and `loffset` since v1.1.0:
# we are raising the warning here to be able to set the `stacklevel`
# properly since we need to raise the `base` and `loffset` deprecation
# warning from three different cases:
# core/generic.py::NDFrame.resample
# core/groupby/groupby.py::GroupBy.resample
# core/groupby/grouper.py::Grouper
# raising these warnings from TimeGrouper directly would fail the test:
# tests/resample/test_deprecated.py::test_deprecating_on_loffset_and_base
if kwargs.get("base", None) is not None:
warnings.warn(
"'base' in .resample() and in Grouper() is deprecated.\n"
"The new arguments that you should use are 'offset' or 'origin'.\n"
'\n>>> df.resample(freq="3s", base=2)\n'
"\nbecomes:\n"
'\n>>> df.resample(freq="3s", offset="2s")\n',
FutureWarning,
stacklevel=find_stack_level(),
)
if kwargs.get("loffset", None) is not None:
warnings.warn(
"'loffset' in .resample() and in Grouper() is deprecated.\n"
'\n>>> df.resample(freq="3s", loffset="8H")\n'
"\nbecomes:\n"
"\n>>> from pandas.tseries.frequencies import to_offset"
'\n>>> df = df.resample(freq="3s").mean()'
'\n>>> df.index = df.index.to_timestamp() + to_offset("8H")\n',
FutureWarning,
stacklevel=find_stack_level(),
)