forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstring_.py
568 lines (461 loc) · 17.5 KB
/
string_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
from pandas._config import get_option
from pandas._libs import (
lib,
missing as libmissing,
)
from pandas._libs.arrays import NDArrayBacked
from pandas._typing import (
Dtype,
Scalar,
type_t,
)
from pandas.compat import pa_version_under1p01
from pandas.compat.numpy import function as nv
from pandas.core.dtypes.base import (
ExtensionDtype,
StorageExtensionDtype,
register_extension_dtype,
)
from pandas.core.dtypes.common import (
is_array_like,
is_bool_dtype,
is_dtype_equal,
is_integer_dtype,
is_object_dtype,
is_string_dtype,
pandas_dtype,
)
from pandas.core import ops
from pandas.core.array_algos import masked_reductions
from pandas.core.arrays import (
ExtensionArray,
FloatingArray,
IntegerArray,
)
from pandas.core.arrays.floating import FloatingDtype
from pandas.core.arrays.integer import IntegerDtype
from pandas.core.arrays.numpy_ import PandasArray
from pandas.core.construction import extract_array
from pandas.core.indexers import check_array_indexer
from pandas.core.missing import isna
if TYPE_CHECKING:
import pyarrow
from pandas import Series
@register_extension_dtype
class StringDtype(StorageExtensionDtype):
"""
Extension dtype for string data.
.. versionadded:: 1.0.0
.. warning::
StringDtype is considered experimental. The implementation and
parts of the API may change without warning.
Parameters
----------
storage : {"python", "pyarrow"}, optional
If not given, the value of ``pd.options.mode.string_storage``.
Attributes
----------
None
Methods
-------
None
Examples
--------
>>> pd.StringDtype()
string[python]
>>> pd.StringDtype(storage="pyarrow")
string[pyarrow]
"""
name = "string"
#: StringDtype.na_value uses pandas.NA
na_value = libmissing.NA
_metadata = ("storage",)
def __init__(self, storage=None) -> None:
if storage is None:
storage = get_option("mode.string_storage")
if storage not in {"python", "pyarrow"}:
raise ValueError(
f"Storage must be 'python' or 'pyarrow'. Got {storage} instead."
)
if storage == "pyarrow" and pa_version_under1p01:
raise ImportError(
"pyarrow>=1.0.0 is required for PyArrow backed StringArray."
)
self.storage = storage
@property
def type(self) -> type[str]:
return str
@classmethod
def construct_from_string(cls, string):
"""
Construct a StringDtype from a string.
Parameters
----------
string : str
The type of the name. The storage type will be taking from `string`.
Valid options and their storage types are
========================== ==============================================
string result storage
========================== ==============================================
``'string'`` pd.options.mode.string_storage, default python
``'string[python]'`` python
``'string[pyarrow]'`` pyarrow
========================== ==============================================
Returns
-------
StringDtype
Raise
-----
TypeError
If the string is not a valid option.
"""
if not isinstance(string, str):
raise TypeError(
f"'construct_from_string' expects a string, got {type(string)}"
)
if string == "string":
return cls()
elif string == "string[python]":
return cls(storage="python")
elif string == "string[pyarrow]":
return cls(storage="pyarrow")
else:
raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'")
# https://github.com/pandas-dev/pandas/issues/36126
# error: Signature of "construct_array_type" incompatible with supertype
# "ExtensionDtype"
def construct_array_type( # type: ignore[override]
self,
) -> type_t[BaseStringArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
from pandas.core.arrays.string_arrow import ArrowStringArray
if self.storage == "python":
return StringArray
else:
return ArrowStringArray
def __from_arrow__(
self, array: pyarrow.Array | pyarrow.ChunkedArray
) -> BaseStringArray:
"""
Construct StringArray from pyarrow Array/ChunkedArray.
"""
if self.storage == "pyarrow":
from pandas.core.arrays.string_arrow import ArrowStringArray
return ArrowStringArray(array)
else:
import pyarrow
if isinstance(array, pyarrow.Array):
chunks = [array]
else:
# pyarrow.ChunkedArray
chunks = array.chunks
results = []
for arr in chunks:
# using _from_sequence to ensure None is converted to NA
str_arr = StringArray._from_sequence(np.array(arr))
results.append(str_arr)
if results:
return StringArray._concat_same_type(results)
else:
return StringArray(np.array([], dtype="object"))
class BaseStringArray(ExtensionArray):
"""
Mixin class for StringArray, ArrowStringArray.
"""
pass
class StringArray(BaseStringArray, PandasArray):
"""
Extension array for string data.
.. versionadded:: 1.0.0
.. warning::
StringArray is considered experimental. The implementation and
parts of the API may change without warning.
Parameters
----------
values : array-like
The array of data.
.. warning::
Currently, this expects an object-dtype ndarray
where the elements are Python strings
or nan-likes (``None``, ``np.nan``, ``NA``).
This may change without warning in the future. Use
:meth:`pandas.array` with ``dtype="string"`` for a stable way of
creating a `StringArray` from any sequence.
.. versionchanged:: 1.5.0
StringArray now accepts array-likes containing
nan-likes(``None``, ``np.nan``) for the ``values`` parameter
in addition to strings and :attr:`pandas.NA`
copy : bool, default False
Whether to copy the array of data.
Attributes
----------
None
Methods
-------
None
See Also
--------
array
The recommended function for creating a StringArray.
Series.str
The string methods are available on Series backed by
a StringArray.
Notes
-----
StringArray returns a BooleanArray for comparison methods.
Examples
--------
>>> pd.array(['This is', 'some text', None, 'data.'], dtype="string")
<StringArray>
['This is', 'some text', <NA>, 'data.']
Length: 4, dtype: string
Unlike arrays instantiated with ``dtype="object"``, ``StringArray``
will convert the values to strings.
>>> pd.array(['1', 1], dtype="object")
<PandasArray>
['1', 1]
Length: 2, dtype: object
>>> pd.array(['1', 1], dtype="string")
<StringArray>
['1', '1']
Length: 2, dtype: string
However, instantiating StringArrays directly with non-strings will raise an error.
For comparison methods, `StringArray` returns a :class:`pandas.BooleanArray`:
>>> pd.array(["a", None, "c"], dtype="string") == "a"
<BooleanArray>
[True, <NA>, False]
Length: 3, dtype: boolean
"""
# undo the PandasArray hack
_typ = "extension"
def __init__(self, values, copy=False) -> None:
values = extract_array(values)
super().__init__(values, copy=copy)
if not isinstance(values, type(self)):
self._validate()
NDArrayBacked.__init__(self, self._ndarray, StringDtype(storage="python"))
def _validate(self):
"""Validate that we only store NA or strings."""
if len(self._ndarray) and not lib.is_string_array(self._ndarray, skipna=True):
raise ValueError("StringArray requires a sequence of strings or pandas.NA")
if self._ndarray.dtype != "object":
raise ValueError(
"StringArray requires a sequence of strings or pandas.NA. Got "
f"'{self._ndarray.dtype}' dtype instead."
)
# Check to see if need to convert Na values to pd.NA
if self._ndarray.ndim > 2:
# Ravel if ndims > 2 b/c no cythonized version available
lib.convert_nans_to_NA(self._ndarray.ravel("K"))
else:
lib.convert_nans_to_NA(self._ndarray)
@classmethod
def _from_sequence(cls, scalars, *, dtype: Dtype | None = None, copy=False):
if dtype and not (isinstance(dtype, str) and dtype == "string"):
dtype = pandas_dtype(dtype)
assert isinstance(dtype, StringDtype) and dtype.storage == "python"
from pandas.core.arrays.masked import BaseMaskedArray
if isinstance(scalars, BaseMaskedArray):
# avoid costly conversion to object dtype
na_values = scalars._mask
result = scalars._data
result = lib.ensure_string_array(result, copy=copy, convert_na_value=False)
result[na_values] = StringDtype.na_value
else:
# convert non-na-likes to str, and nan-likes to StringDtype.na_value
result = lib.ensure_string_array(
scalars, na_value=StringDtype.na_value, copy=copy
)
# Manually creating new array avoids the validation step in the __init__, so is
# faster. Refactor need for validation?
new_string_array = cls.__new__(cls)
NDArrayBacked.__init__(new_string_array, result, StringDtype(storage="python"))
return new_string_array
@classmethod
def _from_sequence_of_strings(
cls, strings, *, dtype: Dtype | None = None, copy=False
):
return cls._from_sequence(strings, dtype=dtype, copy=copy)
@classmethod
def _empty(cls, shape, dtype) -> StringArray:
values = np.empty(shape, dtype=object)
values[:] = libmissing.NA
return cls(values).astype(dtype, copy=False)
def __arrow_array__(self, type=None):
"""
Convert myself into a pyarrow Array.
"""
import pyarrow as pa
if type is None:
type = pa.string()
values = self._ndarray.copy()
values[self.isna()] = None
return pa.array(values, type=type, from_pandas=True)
def _values_for_factorize(self):
arr = self._ndarray.copy()
mask = self.isna()
arr[mask] = None
return arr, None
def __setitem__(self, key, value):
value = extract_array(value, extract_numpy=True)
if isinstance(value, type(self)):
# extract_array doesn't extract PandasArray subclasses
value = value._ndarray
key = check_array_indexer(self, key)
scalar_key = lib.is_scalar(key)
scalar_value = lib.is_scalar(value)
if scalar_key and not scalar_value:
raise ValueError("setting an array element with a sequence.")
# validate new items
if scalar_value:
if isna(value):
value = StringDtype.na_value
elif not isinstance(value, str):
raise ValueError(
f"Cannot set non-string value '{value}' into a StringArray."
)
else:
if not is_array_like(value):
value = np.asarray(value, dtype=object)
if len(value) and not lib.is_string_array(value, skipna=True):
raise ValueError("Must provide strings.")
super().__setitem__(key, value)
def astype(self, dtype, copy: bool = True):
dtype = pandas_dtype(dtype)
if is_dtype_equal(dtype, self.dtype):
if copy:
return self.copy()
return self
elif isinstance(dtype, IntegerDtype):
arr = self._ndarray.copy()
mask = self.isna()
arr[mask] = 0
values = arr.astype(dtype.numpy_dtype)
return IntegerArray(values, mask, copy=False)
elif isinstance(dtype, FloatingDtype):
arr = self.copy()
mask = self.isna()
arr[mask] = "0"
values = arr.astype(dtype.numpy_dtype)
return FloatingArray(values, mask, copy=False)
elif isinstance(dtype, ExtensionDtype):
return super().astype(dtype, copy=copy)
elif np.issubdtype(dtype, np.floating):
arr = self._ndarray.copy()
mask = self.isna()
arr[mask] = 0
values = arr.astype(dtype)
values[mask] = np.nan
return values
return super().astype(dtype, copy)
def _reduce(
self, name: str, *, skipna: bool = True, axis: int | None = 0, **kwargs
):
if name in ["min", "max"]:
return getattr(self, name)(skipna=skipna, axis=axis)
raise TypeError(f"Cannot perform reduction '{name}' with string dtype")
def min(self, axis=None, skipna: bool = True, **kwargs) -> Scalar:
nv.validate_min((), kwargs)
result = masked_reductions.min(
values=self.to_numpy(), mask=self.isna(), skipna=skipna
)
return self._wrap_reduction_result(axis, result)
def max(self, axis=None, skipna: bool = True, **kwargs) -> Scalar:
nv.validate_max((), kwargs)
result = masked_reductions.max(
values=self.to_numpy(), mask=self.isna(), skipna=skipna
)
return self._wrap_reduction_result(axis, result)
def value_counts(self, dropna: bool = True) -> Series:
from pandas import value_counts
result = value_counts(self._ndarray, dropna=dropna).astype("Int64")
result.index = result.index.astype(self.dtype)
return result
def memory_usage(self, deep: bool = False) -> int:
result = self._ndarray.nbytes
if deep:
return result + lib.memory_usage_of_objects(self._ndarray)
return result
def _cmp_method(self, other, op):
from pandas.arrays import BooleanArray
if isinstance(other, StringArray):
other = other._ndarray
mask = isna(self) | isna(other)
valid = ~mask
if not lib.is_scalar(other):
if len(other) != len(self):
# prevent improper broadcasting when other is 2D
raise ValueError(
f"Lengths of operands do not match: {len(self)} != {len(other)}"
)
other = np.asarray(other)
other = other[valid]
if op.__name__ in ops.ARITHMETIC_BINOPS:
result = np.empty_like(self._ndarray, dtype="object")
result[mask] = StringDtype.na_value
result[valid] = op(self._ndarray[valid], other)
return StringArray(result)
else:
# logical
result = np.zeros(len(self._ndarray), dtype="bool")
result[valid] = op(self._ndarray[valid], other)
return BooleanArray(result, mask)
_arith_method = _cmp_method
# ------------------------------------------------------------------------
# String methods interface
# error: Incompatible types in assignment (expression has type "NAType",
# base class "PandasArray" defined the type as "float")
_str_na_value = StringDtype.na_value # type: ignore[assignment]
def _str_map(
self, f, na_value=None, dtype: Dtype | None = None, convert: bool = True
):
from pandas.arrays import BooleanArray
if dtype is None:
dtype = StringDtype(storage="python")
if na_value is None:
na_value = self.dtype.na_value
mask = isna(self)
arr = np.asarray(self)
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
constructor: type[IntegerArray] | type[BooleanArray]
if is_integer_dtype(dtype):
constructor = IntegerArray
else:
constructor = BooleanArray
na_value_is_na = isna(na_value)
if na_value_is_na:
na_value = 1
result = lib.map_infer_mask(
arr,
f,
mask.view("uint8"),
convert=False,
na_value=na_value,
# error: Argument 1 to "dtype" has incompatible type
# "Union[ExtensionDtype, str, dtype[Any], Type[object]]"; expected
# "Type[object]"
dtype=np.dtype(dtype), # type: ignore[arg-type]
)
if not na_value_is_na:
mask[:] = False
return constructor(result, mask)
elif is_string_dtype(dtype) and not is_object_dtype(dtype):
# i.e. StringDtype
result = lib.map_infer_mask(
arr, f, mask.view("uint8"), convert=False, na_value=na_value
)
return StringArray(result)
else:
# This is when the result type is object. We reach this when
# -> We know the result type is truly object (e.g. .encode returns bytes
# or .findall returns a list).
# -> We don't know the result type. E.g. `.get` can return anything.
return lib.map_infer_mask(arr, f, mask.view("uint8"))