forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_numeric_only.py
422 lines (379 loc) · 14.2 KB
/
test_numeric_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import re
import pytest
from pandas._libs import lib
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
from pandas.tests.groupby import get_groupby_method_args
class TestNumericOnly:
# make sure that we are passing thru kwargs to our agg functions
@pytest.fixture
def df(self):
# GH3668
# GH5724
df = DataFrame(
{
"group": [1, 1, 2],
"int": [1, 2, 3],
"float": [4.0, 5.0, 6.0],
"string": list("abc"),
"category_string": Series(list("abc")).astype("category"),
"category_int": [7, 8, 9],
"datetime": date_range("20130101", periods=3),
"datetimetz": date_range("20130101", periods=3, tz="US/Eastern"),
"timedelta": pd.timedelta_range("1 s", periods=3, freq="s"),
},
columns=[
"group",
"int",
"float",
"string",
"category_string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
],
)
return df
@pytest.mark.parametrize("method", ["mean", "median"])
def test_averages(self, df, method):
# mean / median
expected_columns_numeric = Index(["int", "float", "category_int"])
gb = df.groupby("group")
expected = DataFrame(
{
"category_int": [7.5, 9],
"float": [4.5, 6.0],
"timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")],
"int": [1.5, 3],
"datetime": [
Timestamp("2013-01-01 12:00:00"),
Timestamp("2013-01-03 00:00:00"),
],
"datetimetz": [
Timestamp("2013-01-01 12:00:00", tz="US/Eastern"),
Timestamp("2013-01-03 00:00:00", tz="US/Eastern"),
],
},
index=Index([1, 2], name="group"),
columns=[
"int",
"float",
"category_int",
],
)
result = getattr(gb, method)(numeric_only=True)
tm.assert_frame_equal(result.reindex_like(expected), expected)
expected_columns = expected.columns
self._check(df, method, expected_columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["min", "max"])
def test_extrema(self, df, method):
# TODO: min, max *should* handle
# categorical (ordered) dtype
expected_columns = Index(
[
"int",
"float",
"string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
]
)
expected_columns_numeric = expected_columns
self._check(df, method, expected_columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["first", "last"])
def test_first_last(self, df, method):
expected_columns = Index(
[
"int",
"float",
"string",
"category_string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
]
)
expected_columns_numeric = expected_columns
self._check(df, method, expected_columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["sum", "cumsum"])
def test_sum_cumsum(self, df, method):
expected_columns_numeric = Index(["int", "float", "category_int"])
expected_columns = Index(
["int", "float", "string", "category_int", "timedelta"]
)
if method == "cumsum":
# cumsum loses string
expected_columns = Index(["int", "float", "category_int", "timedelta"])
self._check(df, method, expected_columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["prod", "cumprod"])
def test_prod_cumprod(self, df, method):
expected_columns = Index(["int", "float", "category_int"])
expected_columns_numeric = expected_columns
self._check(df, method, expected_columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["cummin", "cummax"])
def test_cummin_cummax(self, df, method):
# like min, max, but don't include strings
expected_columns = Index(
["int", "float", "category_int", "datetime", "datetimetz", "timedelta"]
)
# GH#15561: numeric_only=False set by default like min/max
expected_columns_numeric = expected_columns
self._check(df, method, expected_columns, expected_columns_numeric)
def _check(self, df, method, expected_columns, expected_columns_numeric):
gb = df.groupby("group")
# object dtypes for transformations are not implemented in Cython and
# have no Python fallback
exception = NotImplementedError if method.startswith("cum") else TypeError
if method in ("min", "max", "cummin", "cummax", "cumsum", "cumprod"):
# The methods default to numeric_only=False and raise TypeError
msg = "|".join(
[
"Categorical is not ordered",
f"Cannot perform {method} with non-ordered Categorical",
re.escape(f"agg function failed [how->{method},dtype->object]"),
# cumsum/cummin/cummax/cumprod
"function is not implemented for this dtype",
]
)
with pytest.raises(exception, match=msg):
getattr(gb, method)()
elif method in ("sum", "mean", "median", "prod"):
msg = "|".join(
[
"category type does not support sum operations",
re.escape(f"agg function failed [how->{method},dtype->object]"),
re.escape(f"agg function failed [how->{method},dtype->string]"),
]
)
with pytest.raises(exception, match=msg):
getattr(gb, method)()
else:
result = getattr(gb, method)()
tm.assert_index_equal(result.columns, expected_columns_numeric)
if method not in ("first", "last"):
msg = "|".join(
[
"Categorical is not ordered",
"category type does not support",
"function is not implemented for this dtype",
f"Cannot perform {method} with non-ordered Categorical",
re.escape(f"agg function failed [how->{method},dtype->object]"),
re.escape(f"agg function failed [how->{method},dtype->string]"),
]
)
with pytest.raises(exception, match=msg):
getattr(gb, method)(numeric_only=False)
else:
result = getattr(gb, method)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
@pytest.mark.parametrize(
"kernel, has_arg",
[
("all", False),
("any", False),
("bfill", False),
("corr", True),
("corrwith", True),
("cov", True),
("cummax", True),
("cummin", True),
("cumprod", True),
("cumsum", True),
("diff", False),
("ffill", False),
("first", True),
("idxmax", True),
("idxmin", True),
("last", True),
("max", True),
("mean", True),
("median", True),
("min", True),
("nth", False),
("nunique", False),
("pct_change", False),
("prod", True),
("quantile", True),
("sem", True),
("skew", True),
("std", True),
("sum", True),
("var", True),
],
)
@pytest.mark.parametrize("numeric_only", [True, False, lib.no_default])
@pytest.mark.parametrize("keys", [["a1"], ["a1", "a2"]])
def test_numeric_only(kernel, has_arg, numeric_only, keys):
# GH#46072
# drops_nuisance: Whether the op drops nuisance columns even when numeric_only=False
# has_arg: Whether the op has a numeric_only arg
df = DataFrame({"a1": [1, 1], "a2": [2, 2], "a3": [5, 6], "b": 2 * [object]})
args = get_groupby_method_args(kernel, df)
kwargs = {} if numeric_only is lib.no_default else {"numeric_only": numeric_only}
gb = df.groupby(keys)
method = getattr(gb, kernel)
if has_arg and numeric_only is True:
# Cases where b does not appear in the result
result = method(*args, **kwargs)
assert "b" not in result.columns
elif (
# kernels that work on any dtype and have numeric_only arg
kernel in ("first", "last")
or (
# kernels that work on any dtype and don't have numeric_only arg
kernel in ("any", "all", "bfill", "ffill", "fillna", "nth", "nunique")
and numeric_only is lib.no_default
)
):
warn = FutureWarning if kernel == "fillna" else None
msg = "DataFrameGroupBy.fillna is deprecated"
with tm.assert_produces_warning(warn, match=msg):
result = method(*args, **kwargs)
assert "b" in result.columns
elif has_arg:
assert numeric_only is not True
# kernels that are successful on any dtype were above; this will fail
# object dtypes for transformations are not implemented in Cython and
# have no Python fallback
exception = NotImplementedError if kernel.startswith("cum") else TypeError
msg = "|".join(
[
"not allowed for this dtype",
"cannot be performed against 'object' dtypes",
# On PY39 message is "a number"; on PY310 and after is "a real number"
"must be a string or a.* number",
"unsupported operand type",
"function is not implemented for this dtype",
re.escape(f"agg function failed [how->{kernel},dtype->object]"),
]
)
if kernel == "idxmin":
msg = "'<' not supported between instances of 'type' and 'type'"
elif kernel == "idxmax":
msg = "'>' not supported between instances of 'type' and 'type'"
with pytest.raises(exception, match=msg):
method(*args, **kwargs)
elif not has_arg and numeric_only is not lib.no_default:
with pytest.raises(
TypeError, match="got an unexpected keyword argument 'numeric_only'"
):
method(*args, **kwargs)
else:
assert kernel in ("diff", "pct_change")
assert numeric_only is lib.no_default
# Doesn't have numeric_only argument and fails on nuisance columns
with pytest.raises(TypeError, match=r"unsupported operand type"):
method(*args, **kwargs)
@pytest.mark.filterwarnings("ignore:Downcasting object dtype arrays:FutureWarning")
@pytest.mark.parametrize("dtype", [bool, int, float, object])
def test_deprecate_numeric_only_series(dtype, groupby_func, request):
# GH#46560
grouper = [0, 0, 1]
ser = Series([1, 0, 0], dtype=dtype)
gb = ser.groupby(grouper)
if groupby_func == "corrwith":
# corrwith is not implemented on SeriesGroupBy
assert not hasattr(gb, groupby_func)
return
method = getattr(gb, groupby_func)
expected_ser = Series([1, 0, 0])
expected_gb = expected_ser.groupby(grouper)
expected_method = getattr(expected_gb, groupby_func)
args = get_groupby_method_args(groupby_func, ser)
fails_on_numeric_object = (
"corr",
"cov",
"cummax",
"cummin",
"cumprod",
"cumsum",
"quantile",
)
# ops that give an object result on object input
obj_result = (
"first",
"last",
"nth",
"bfill",
"ffill",
"shift",
"sum",
"diff",
"pct_change",
"var",
"mean",
"median",
"min",
"max",
"prod",
"skew",
)
# Test default behavior; kernels that fail may be enabled in the future but kernels
# that succeed should not be allowed to fail (without deprecation, at least)
if groupby_func in fails_on_numeric_object and dtype is object:
if groupby_func == "quantile":
msg = "cannot be performed against 'object' dtypes"
else:
msg = "is not supported for object dtype"
with pytest.raises(TypeError, match=msg):
method(*args)
elif dtype is object:
result = method(*args)
expected = expected_method(*args)
if groupby_func in obj_result:
expected = expected.astype(object)
tm.assert_series_equal(result, expected)
has_numeric_only = (
"first",
"last",
"max",
"mean",
"median",
"min",
"prod",
"quantile",
"sem",
"skew",
"std",
"sum",
"var",
"cummax",
"cummin",
"cumprod",
"cumsum",
)
if groupby_func not in has_numeric_only:
msg = "got an unexpected keyword argument 'numeric_only'"
with pytest.raises(TypeError, match=msg):
method(*args, numeric_only=True)
elif dtype is object:
msg = "|".join(
[
"SeriesGroupBy.sem called with numeric_only=True and dtype object",
"Series.skew does not allow numeric_only=True with non-numeric",
"cum(sum|prod|min|max) is not supported for object dtype",
r"Cannot use numeric_only=True with SeriesGroupBy\..* and non-numeric",
]
)
with pytest.raises(TypeError, match=msg):
method(*args, numeric_only=True)
elif dtype == bool and groupby_func == "quantile":
msg = "Cannot use quantile with bool dtype"
with pytest.raises(TypeError, match=msg):
# GH#51424
method(*args, numeric_only=False)
else:
result = method(*args, numeric_only=True)
expected = method(*args, numeric_only=False)
tm.assert_series_equal(result, expected)