forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_at.py
222 lines (175 loc) · 6.78 KB
/
test_at.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from datetime import (
datetime,
timezone,
)
import numpy as np
import pytest
from pandas.errors import InvalidIndexError
from pandas import (
CategoricalDtype,
CategoricalIndex,
DataFrame,
MultiIndex,
Series,
Timestamp,
)
import pandas._testing as tm
def test_at_timezone():
# https://github.com/pandas-dev/pandas/issues/33544
result = DataFrame({"foo": [datetime(2000, 1, 1)]})
result.at[0, "foo"] = datetime(2000, 1, 2, tzinfo=timezone.utc)
expected = DataFrame(
{"foo": [datetime(2000, 1, 2, tzinfo=timezone.utc)]}, dtype=object
)
tm.assert_frame_equal(result, expected)
def test_selection_methods_of_assigned_col():
# GH 29282
df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = DataFrame(data={"c": [7, 8, 9]}, index=[2, 1, 0])
df["c"] = df2["c"]
df.at[1, "c"] = 11
result = df
expected = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [9, 11, 7]})
tm.assert_frame_equal(result, expected)
result = df.at[1, "c"]
assert result == 11
result = df["c"]
expected = Series([9, 11, 7], name="c")
tm.assert_series_equal(result, expected)
result = df[["c"]]
expected = DataFrame({"c": [9, 11, 7]})
tm.assert_frame_equal(result, expected)
class TestAtSetItem:
def test_at_setitem_item_cache_cleared(self):
# GH#22372 Note the multi-step construction is necessary to trigger
# the original bug. pandas/issues/22372#issuecomment-413345309
df = DataFrame(index=[0])
df["x"] = 1
df["cost"] = 2
# accessing df["cost"] adds "cost" to the _item_cache
df["cost"]
# This loc[[0]] lookup used to call _consolidate_inplace at the
# BlockManager level, which failed to clear the _item_cache
df.loc[[0]]
df.at[0, "x"] = 4
df.at[0, "cost"] = 789
expected = DataFrame({"x": [4], "cost": 789}, index=[0])
tm.assert_frame_equal(df, expected)
# And in particular, check that the _item_cache has updated correctly.
tm.assert_series_equal(df["cost"], expected["cost"])
def test_at_setitem_mixed_index_assignment(self):
# GH#19860
ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2])
ser.at["a"] = 11
assert ser.iat[0] == 11
ser.at[1] = 22
assert ser.iat[3] == 22
def test_at_setitem_categorical_missing(self):
df = DataFrame(
index=range(3), columns=range(3), dtype=CategoricalDtype(["foo", "bar"])
)
df.at[1, 1] = "foo"
expected = DataFrame(
[
[np.nan, np.nan, np.nan],
[np.nan, "foo", np.nan],
[np.nan, np.nan, np.nan],
],
dtype=CategoricalDtype(["foo", "bar"]),
)
tm.assert_frame_equal(df, expected)
def test_at_setitem_multiindex(self):
df = DataFrame(
np.zeros((3, 2), dtype="int64"),
columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]),
)
df.at[0, "a"] = 10
expected = DataFrame(
[[10, 10], [0, 0], [0, 0]],
columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]),
)
tm.assert_frame_equal(df, expected)
class TestAtSetItemWithExpansion:
def test_at_setitem_expansion_series_dt64tz_value(self, tz_naive_fixture):
# GH#25506
ts = Timestamp("2017-08-05 00:00:00+0100", tz=tz_naive_fixture)
result = Series(ts)
result.at[1] = ts
expected = Series([ts, ts])
tm.assert_series_equal(result, expected)
class TestAtWithDuplicates:
def test_at_with_duplicate_axes_requires_scalar_lookup(self):
# GH#33041 check that falling back to loc doesn't allow non-scalar
# args to slip in
arr = np.random.randn(6).reshape(3, 2)
df = DataFrame(arr, columns=["A", "A"])
msg = "Invalid call for scalar access"
with pytest.raises(ValueError, match=msg):
df.at[[1, 2]]
with pytest.raises(ValueError, match=msg):
df.at[1, ["A"]]
with pytest.raises(ValueError, match=msg):
df.at[:, "A"]
with pytest.raises(ValueError, match=msg):
df.at[[1, 2]] = 1
with pytest.raises(ValueError, match=msg):
df.at[1, ["A"]] = 1
with pytest.raises(ValueError, match=msg):
df.at[:, "A"] = 1
class TestAtErrors:
# TODO: De-duplicate/parametrize
# test_at_series_raises_key_error2, test_at_frame_raises_key_error2
def test_at_series_raises_key_error(self, indexer_al):
# GH#31724 .at should match .loc
ser = Series([1, 2, 3], index=[3, 2, 1])
result = indexer_al(ser)[1]
assert result == 3
with pytest.raises(KeyError, match="a"):
indexer_al(ser)["a"]
def test_at_frame_raises_key_error(self, indexer_al):
# GH#31724 .at should match .loc
df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1])
result = indexer_al(df)[1, 0]
assert result == 3
with pytest.raises(KeyError, match="a"):
indexer_al(df)["a", 0]
with pytest.raises(KeyError, match="a"):
indexer_al(df)[1, "a"]
def test_at_series_raises_key_error2(self, indexer_al):
# at should not fallback
# GH#7814
# GH#31724 .at should match .loc
ser = Series([1, 2, 3], index=list("abc"))
result = indexer_al(ser)["a"]
assert result == 1
with pytest.raises(KeyError, match="^0$"):
indexer_al(ser)[0]
def test_at_frame_raises_key_error2(self, indexer_al):
# GH#31724 .at should match .loc
df = DataFrame({"A": [1, 2, 3]}, index=list("abc"))
result = indexer_al(df)["a", "A"]
assert result == 1
with pytest.raises(KeyError, match="^0$"):
indexer_al(df)["a", 0]
def test_at_frame_multiple_columns(self):
# GH#48296 - at shouldn't modify multiple columns
df = DataFrame({"a": [1, 2], "b": [3, 4]})
with pytest.raises(InvalidIndexError, match=r"slice\(None, None, None\)"):
df.at[5] = [6, 7]
def test_at_getitem_mixed_index_no_fallback(self):
# GH#19860
ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2])
with pytest.raises(KeyError, match="^0$"):
ser.at[0]
with pytest.raises(KeyError, match="^4$"):
ser.at[4]
def test_at_categorical_integers(self):
# CategoricalIndex with integer categories that don't happen to match
# the Categorical's codes
ci = CategoricalIndex([3, 4])
arr = np.arange(4).reshape(2, 2)
frame = DataFrame(arr, index=ci)
for df in [frame, frame.T]:
for key in [0, 1]:
with pytest.raises(KeyError, match=str(key)):
df.at[key, key]