@@ -2821,7 +2821,7 @@ def custom_frame_function(self):
2821
2821
data = {'col1': range(10),
2822
2822
'col2': range(10)}
2823
2823
cdf = CustomDataFrame(data)
2824
-
2824
+
2825
2825
# Did we get back our own DF class?
2826
2826
self.assertTrue(isinstance(cdf, CustomDataFrame))
2827
2827
@@ -2833,7 +2833,7 @@ def custom_frame_function(self):
2833
2833
# Do we get back our own DF class after slicing row-wise?
2834
2834
cdf_rows = cdf[1:5]
2835
2835
self.assertTrue(isinstance(cdf_rows, CustomDataFrame))
2836
- self.assertEqual(cdf_rows.custom_frame_function(), 'OK')
2836
+ self.assertEqual(cdf_rows.custom_frame_function(), 'OK')
2837
2837
2838
2838
# Make sure sliced part of multi-index frame is custom class
2839
2839
mcol = pd.MultiIndex.from_tuples([('A', 'A'), ('A', 'B')])
@@ -5129,6 +5129,11 @@ def test_operators(self):
5129
5129
df = DataFrame({'a': ['a', None, 'b']})
5130
5130
assert_frame_equal(df + df, DataFrame({'a': ['aa', np.nan, 'bb']}))
5131
5131
5132
+ df = DataFrame()
5133
+ self.assertTrue((df + df).equals(DataFrame()))
5134
+ assert_frame_equal(df + df, DataFrame())
5135
+
5136
+
5132
5137
def test_ops_np_scalar(self):
5133
5138
vals, xs = np.random.rand(5, 3), [nan, 7, -23, 2.718, -3.14, np.inf]
5134
5139
f = lambda x: DataFrame(x, index=list('ABCDE'),
0 commit comments