forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_reshape.py
509 lines (421 loc) · 20.3 KB
/
test_reshape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# -*- coding: utf-8 -*-
# pylint: disable-msg=W0612,E1101
from warnings import catch_warnings
import pytest
from collections import OrderedDict
from pandas import DataFrame, Series
import pandas as pd
from numpy import nan
import numpy as np
from pandas.util.testing import assert_frame_equal
from pandas import get_dummies, Categorical, Index
import pandas.util.testing as tm
from pandas.compat import u
class TestGetDummies(object):
@pytest.fixture
def df(self):
return DataFrame({'A': ['a', 'b', 'a'],
'B': ['b', 'b', 'c'],
'C': [1, 2, 3]})
@pytest.fixture(params=['uint8', 'i8', np.float64, bool, None])
def dtype(self, request):
return np.dtype(request.param)
@pytest.fixture(params=['dense', 'sparse'])
def sparse(self, request):
# params are strings to simplify reading test results,
# e.g. TestGetDummies::test_basic[uint8-sparse] instead of [uint8-True]
return request.param == 'sparse'
def effective_dtype(self, dtype):
if dtype is None:
return np.uint8
return dtype
def test_raises_on_dtype_object(self, df):
with pytest.raises(ValueError):
get_dummies(df, dtype='object')
def test_basic(self, sparse, dtype):
s_list = list('abc')
s_series = Series(s_list)
s_series_index = Series(s_list, list('ABC'))
expected = DataFrame({'a': [1, 0, 0],
'b': [0, 1, 0],
'c': [0, 0, 1]},
dtype=self.effective_dtype(dtype))
result = get_dummies(s_list, sparse=sparse, dtype=dtype)
assert_frame_equal(result, expected)
result = get_dummies(s_series, sparse=sparse, dtype=dtype)
assert_frame_equal(result, expected)
expected.index = list('ABC')
result = get_dummies(s_series_index, sparse=sparse, dtype=dtype)
assert_frame_equal(result, expected)
def test_basic_types(self, sparse, dtype):
# GH 10531
s_list = list('abc')
s_series = Series(s_list)
s_df = DataFrame({'a': [0, 1, 0, 1, 2],
'b': ['A', 'A', 'B', 'C', 'C'],
'c': [2, 3, 3, 3, 2]})
expected = DataFrame({'a': [1, 0, 0],
'b': [0, 1, 0],
'c': [0, 0, 1]},
dtype=self.effective_dtype(dtype),
columns=list('abc'))
if not sparse:
compare = tm.assert_frame_equal
else:
expected = expected.to_sparse(fill_value=0, kind='integer')
compare = tm.assert_sp_frame_equal
result = get_dummies(s_list, sparse=sparse, dtype=dtype)
compare(result, expected)
result = get_dummies(s_series, sparse=sparse, dtype=dtype)
compare(result, expected)
result = get_dummies(s_df, columns=s_df.columns,
sparse=sparse, dtype=dtype)
tm.assert_series_equal(result.get_dtype_counts(),
Series({dtype.name: 8}))
result = get_dummies(s_df, columns=['a'], sparse=sparse, dtype=dtype)
dtype_name = self.effective_dtype(dtype).name
expected_counts = {'int64': 1, 'object': 1}
expected_counts[dtype_name] = 3 + expected_counts.get(dtype_name, 0)
expected = Series(expected_counts).sort_values()
tm.assert_series_equal(result.get_dtype_counts().sort_values(),
expected)
def test_just_na(self, sparse):
just_na_list = [np.nan]
just_na_series = Series(just_na_list)
just_na_series_index = Series(just_na_list, index=['A'])
res_list = get_dummies(just_na_list, sparse=sparse)
res_series = get_dummies(just_na_series, sparse=sparse)
res_series_index = get_dummies(just_na_series_index, sparse=sparse)
assert res_list.empty
assert res_series.empty
assert res_series_index.empty
assert res_list.index.tolist() == [0]
assert res_series.index.tolist() == [0]
assert res_series_index.index.tolist() == ['A']
def test_include_na(self, sparse, dtype):
if sparse:
pytest.xfail(reason='nan in index is problematic (GH 16894)')
s = ['a', 'b', np.nan]
res = get_dummies(s, sparse=sparse, dtype=dtype)
exp = DataFrame({'a': [1, 0, 0],
'b': [0, 1, 0]},
dtype=self.effective_dtype(dtype))
assert_frame_equal(res, exp)
# Sparse dataframes do not allow nan labelled columns, see #GH8822
res_na = get_dummies(s, dummy_na=True, sparse=sparse, dtype=dtype)
exp_na = DataFrame({nan: [0, 0, 1],
'a': [1, 0, 0],
'b': [0, 1, 0]},
dtype=self.effective_dtype(dtype))
exp_na = exp_na.reindex(['a', 'b', nan], axis=1)
# hack (NaN handling in assert_index_equal)
exp_na.columns = res_na.columns
assert_frame_equal(res_na, exp_na)
res_just_na = get_dummies([nan], dummy_na=True,
sparse=sparse, dtype=dtype)
exp_just_na = DataFrame(Series(1, index=[0]), columns=[nan],
dtype=self.effective_dtype(dtype))
tm.assert_numpy_array_equal(res_just_na.values, exp_just_na.values)
def test_unicode(self, sparse):
# See GH 6885 - get_dummies chokes on unicode values
import unicodedata
e = 'e'
eacute = unicodedata.lookup('LATIN SMALL LETTER E WITH ACUTE')
s = [e, eacute, eacute]
res = get_dummies(s, prefix='letter', sparse=sparse)
exp = DataFrame({'letter_e': [1, 0, 0],
u('letter_%s') % eacute: [0, 1, 1]},
dtype=np.uint8)
assert_frame_equal(res, exp)
def test_dataframe_dummies_all_obj(self, df, sparse):
df = df[['A', 'B']]
result = get_dummies(df, sparse=sparse)
expected = DataFrame({'A_a': [1, 0, 1],
'A_b': [0, 1, 0],
'B_b': [1, 1, 0],
'B_c': [0, 0, 1]},
dtype=np.uint8)
assert_frame_equal(result, expected)
def test_dataframe_dummies_mix_default(self, df, sparse, dtype):
result = get_dummies(df, sparse=sparse, dtype=dtype)
expected = DataFrame({'C': [1, 2, 3],
'A_a': [1, 0, 1],
'A_b': [0, 1, 0],
'B_b': [1, 1, 0],
'B_c': [0, 0, 1]})
cols = ['A_a', 'A_b', 'B_b', 'B_c']
expected[cols] = expected[cols].astype(dtype)
expected = expected[['C', 'A_a', 'A_b', 'B_b', 'B_c']]
assert_frame_equal(result, expected)
def test_dataframe_dummies_prefix_list(self, df, sparse):
prefixes = ['from_A', 'from_B']
result = get_dummies(df, prefix=prefixes, sparse=sparse)
expected = DataFrame({'C': [1, 2, 3],
'from_A_a': [1, 0, 1],
'from_A_b': [0, 1, 0],
'from_B_b': [1, 1, 0],
'from_B_c': [0, 0, 1]},
dtype=np.uint8)
expected[['C']] = df[['C']]
expected = expected[['C', 'from_A_a', 'from_A_b',
'from_B_b', 'from_B_c']]
assert_frame_equal(result, expected)
def test_dataframe_dummies_prefix_str(self, df, sparse):
# not that you should do this...
result = get_dummies(df, prefix='bad', sparse=sparse)
bad_columns = ['bad_a', 'bad_b', 'bad_b', 'bad_c']
expected = DataFrame([[1, 1, 0, 1, 0],
[2, 0, 1, 1, 0],
[3, 1, 0, 0, 1]],
columns=['C'] + bad_columns,
dtype=np.uint8)
expected = expected.astype({"C": np.int64})
assert_frame_equal(result, expected)
def test_dataframe_dummies_subset(self, df, sparse):
result = get_dummies(df, prefix=['from_A'], columns=['A'],
sparse=sparse)
expected = DataFrame({'from_A_a': [1, 0, 1],
'from_A_b': [0, 1, 0],
'B': ['b', 'b', 'c'],
'C': [1, 2, 3]}, dtype=np.uint8)
expected[['C']] = df[['C']]
assert_frame_equal(result, expected)
def test_dataframe_dummies_prefix_sep(self, df, sparse):
result = get_dummies(df, prefix_sep='..', sparse=sparse)
expected = DataFrame({'C': [1, 2, 3],
'A..a': [1, 0, 1],
'A..b': [0, 1, 0],
'B..b': [1, 1, 0],
'B..c': [0, 0, 1]},
dtype=np.uint8)
expected[['C']] = df[['C']]
expected = expected[['C', 'A..a', 'A..b', 'B..b', 'B..c']]
assert_frame_equal(result, expected)
result = get_dummies(df, prefix_sep=['..', '__'], sparse=sparse)
expected = expected.rename(columns={'B..b': 'B__b', 'B..c': 'B__c'})
assert_frame_equal(result, expected)
result = get_dummies(df, prefix_sep={'A': '..', 'B': '__'},
sparse=sparse)
assert_frame_equal(result, expected)
def test_dataframe_dummies_prefix_bad_length(self, df, sparse):
with pytest.raises(ValueError):
get_dummies(df, prefix=['too few'], sparse=sparse)
def test_dataframe_dummies_prefix_sep_bad_length(self, df, sparse):
with pytest.raises(ValueError):
get_dummies(df, prefix_sep=['bad'], sparse=sparse)
def test_dataframe_dummies_prefix_dict(self, sparse):
prefixes = {'A': 'from_A', 'B': 'from_B'}
df = DataFrame({'A': ['a', 'b', 'a'],
'B': ['b', 'b', 'c'],
'C': [1, 2, 3]})
result = get_dummies(df, prefix=prefixes, sparse=sparse)
expected = DataFrame({'from_A_a': [1, 0, 1],
'from_A_b': [0, 1, 0],
'from_B_b': [1, 1, 0],
'from_B_c': [0, 0, 1],
'C': [1, 2, 3]})
columns = ['from_A_a', 'from_A_b', 'from_B_b', 'from_B_c']
expected[columns] = expected[columns].astype(np.uint8)
assert_frame_equal(result, expected)
def test_dataframe_dummies_with_na(self, df, sparse, dtype):
df.loc[3, :] = [np.nan, np.nan, np.nan]
result = get_dummies(df, dummy_na=True,
sparse=sparse, dtype=dtype).sort_index(axis=1)
expected = DataFrame({'C': [1, 2, 3, np.nan],
'A_a': [1, 0, 1, 0],
'A_b': [0, 1, 0, 0],
'A_nan': [0, 0, 0, 1],
'B_b': [1, 1, 0, 0],
'B_c': [0, 0, 1, 0],
'B_nan': [0, 0, 0, 1]}).sort_index(axis=1)
e_dtype = self.effective_dtype(dtype)
columns = ['A_a', 'A_b', 'A_nan', 'B_b', 'B_c', 'B_nan']
expected[columns] = expected[columns].astype(e_dtype)
assert_frame_equal(result, expected)
result = get_dummies(df, dummy_na=False, sparse=sparse, dtype=dtype)
expected = expected[['C', 'A_a', 'A_b', 'B_b', 'B_c']]
assert_frame_equal(result, expected)
def test_dataframe_dummies_with_categorical(self, df, sparse, dtype):
df['cat'] = pd.Categorical(['x', 'y', 'y'])
result = get_dummies(df, sparse=sparse, dtype=dtype).sort_index(axis=1)
expected = DataFrame({'C': [1, 2, 3],
'A_a': [1, 0, 1],
'A_b': [0, 1, 0],
'B_b': [1, 1, 0],
'B_c': [0, 0, 1],
'cat_x': [1, 0, 0],
'cat_y': [0, 1, 1]}).sort_index(axis=1)
columns = ['A_a', 'A_b', 'B_b', 'B_c', 'cat_x', 'cat_y']
effective_dtype = self.effective_dtype(dtype)
expected[columns] = expected[columns].astype(effective_dtype)
expected.sort_index(axis=1)
assert_frame_equal(result, expected)
def test_basic_drop_first(self, sparse):
# GH12402 Add a new parameter `drop_first` to avoid collinearity
# Basic case
s_list = list('abc')
s_series = Series(s_list)
s_series_index = Series(s_list, list('ABC'))
expected = DataFrame({'b': [0, 1, 0],
'c': [0, 0, 1]},
dtype=np.uint8)
result = get_dummies(s_list, drop_first=True, sparse=sparse)
assert_frame_equal(result, expected)
result = get_dummies(s_series, drop_first=True, sparse=sparse)
assert_frame_equal(result, expected)
expected.index = list('ABC')
result = get_dummies(s_series_index, drop_first=True, sparse=sparse)
assert_frame_equal(result, expected)
def test_basic_drop_first_one_level(self, sparse):
# Test the case that categorical variable only has one level.
s_list = list('aaa')
s_series = Series(s_list)
s_series_index = Series(s_list, list('ABC'))
expected = DataFrame(index=np.arange(3))
result = get_dummies(s_list, drop_first=True, sparse=sparse)
assert_frame_equal(result, expected)
result = get_dummies(s_series, drop_first=True, sparse=sparse)
assert_frame_equal(result, expected)
expected = DataFrame(index=list('ABC'))
result = get_dummies(s_series_index, drop_first=True, sparse=sparse)
assert_frame_equal(result, expected)
def test_basic_drop_first_NA(self, sparse):
# Test NA handling together with drop_first
s_NA = ['a', 'b', np.nan]
res = get_dummies(s_NA, drop_first=True, sparse=sparse)
exp = DataFrame({'b': [0, 1, 0]}, dtype=np.uint8)
assert_frame_equal(res, exp)
res_na = get_dummies(s_NA, dummy_na=True, drop_first=True,
sparse=sparse)
exp_na = DataFrame(
{'b': [0, 1, 0],
nan: [0, 0, 1]},
dtype=np.uint8).reindex(['b', nan], axis=1)
assert_frame_equal(res_na, exp_na)
res_just_na = get_dummies([nan], dummy_na=True, drop_first=True,
sparse=sparse)
exp_just_na = DataFrame(index=np.arange(1))
assert_frame_equal(res_just_na, exp_just_na)
def test_dataframe_dummies_drop_first(self, df, sparse):
df = df[['A', 'B']]
result = get_dummies(df, drop_first=True, sparse=sparse)
expected = DataFrame({'A_b': [0, 1, 0],
'B_c': [0, 0, 1]},
dtype=np.uint8)
assert_frame_equal(result, expected)
def test_dataframe_dummies_drop_first_with_categorical(
self, df, sparse, dtype):
df['cat'] = pd.Categorical(['x', 'y', 'y'])
result = get_dummies(df, drop_first=True, sparse=sparse)
expected = DataFrame({'C': [1, 2, 3],
'A_b': [0, 1, 0],
'B_c': [0, 0, 1],
'cat_y': [0, 1, 1]})
cols = ['A_b', 'B_c', 'cat_y']
expected[cols] = expected[cols].astype(np.uint8)
expected = expected[['C', 'A_b', 'B_c', 'cat_y']]
assert_frame_equal(result, expected)
def test_dataframe_dummies_drop_first_with_na(self, df, sparse):
df.loc[3, :] = [np.nan, np.nan, np.nan]
result = get_dummies(df, dummy_na=True, drop_first=True,
sparse=sparse).sort_index(axis=1)
expected = DataFrame({'C': [1, 2, 3, np.nan],
'A_b': [0, 1, 0, 0],
'A_nan': [0, 0, 0, 1],
'B_c': [0, 0, 1, 0],
'B_nan': [0, 0, 0, 1]})
cols = ['A_b', 'A_nan', 'B_c', 'B_nan']
expected[cols] = expected[cols].astype(np.uint8)
expected = expected.sort_index(axis=1)
assert_frame_equal(result, expected)
result = get_dummies(df, dummy_na=False, drop_first=True,
sparse=sparse)
expected = expected[['C', 'A_b', 'B_c']]
assert_frame_equal(result, expected)
def test_int_int(self):
data = Series([1, 2, 1])
result = pd.get_dummies(data)
expected = DataFrame([[1, 0],
[0, 1],
[1, 0]],
columns=[1, 2],
dtype=np.uint8)
tm.assert_frame_equal(result, expected)
data = Series(pd.Categorical(['a', 'b', 'a']))
result = pd.get_dummies(data)
expected = DataFrame([[1, 0],
[0, 1],
[1, 0]],
columns=pd.Categorical(['a', 'b']),
dtype=np.uint8)
tm.assert_frame_equal(result, expected)
def test_int_df(self, dtype):
data = DataFrame(
{'A': [1, 2, 1],
'B': pd.Categorical(['a', 'b', 'a']),
'C': [1, 2, 1],
'D': [1., 2., 1.]
}
)
columns = ['C', 'D', 'A_1', 'A_2', 'B_a', 'B_b']
expected = DataFrame([
[1, 1., 1, 0, 1, 0],
[2, 2., 0, 1, 0, 1],
[1, 1., 1, 0, 1, 0]
], columns=columns)
expected[columns[2:]] = expected[columns[2:]].astype(dtype)
result = pd.get_dummies(data, columns=['A', 'B'], dtype=dtype)
tm.assert_frame_equal(result, expected)
def test_dataframe_dummies_preserve_categorical_dtype(self, dtype):
# GH13854
for ordered in [False, True]:
cat = pd.Categorical(list("xy"), categories=list("xyz"),
ordered=ordered)
result = get_dummies(cat, dtype=dtype)
data = np.array([[1, 0, 0], [0, 1, 0]],
dtype=self.effective_dtype(dtype))
cols = pd.CategoricalIndex(cat.categories,
categories=cat.categories,
ordered=ordered)
expected = DataFrame(data, columns=cols,
dtype=self.effective_dtype(dtype))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('sparse', [True, False])
def test_get_dummies_dont_sparsify_all_columns(self, sparse):
# GH18914
df = DataFrame.from_dict(OrderedDict([('GDP', [1, 2]),
('Nation', ['AB', 'CD'])]))
df = get_dummies(df, columns=['Nation'], sparse=sparse)
df2 = df.reindex(columns=['GDP'])
tm.assert_frame_equal(df[['GDP']], df2)
class TestCategoricalReshape(object):
def test_reshaping_panel_categorical(self):
with catch_warnings(record=True):
p = tm.makePanel()
p['str'] = 'foo'
df = p.to_frame()
df['category'] = df['str'].astype('category')
result = df['category'].unstack()
c = Categorical(['foo'] * len(p.major_axis))
expected = DataFrame({'A': c.copy(),
'B': c.copy(),
'C': c.copy(),
'D': c.copy()},
columns=Index(list('ABCD'), name='minor'),
index=p.major_axis.set_names('major'))
tm.assert_frame_equal(result, expected)
class TestMakeAxisDummies(object):
def test_preserve_categorical_dtype(self):
# GH13854
for ordered in [False, True]:
cidx = pd.CategoricalIndex(list("xyz"), ordered=ordered)
midx = pd.MultiIndex(levels=[['a'], cidx],
labels=[[0, 0], [0, 1]])
df = DataFrame([[10, 11]], index=midx)
expected = DataFrame([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]],
index=midx, columns=cidx)
from pandas.core.reshape.reshape import make_axis_dummies
result = make_axis_dummies(df)
tm.assert_frame_equal(result, expected)
result = make_axis_dummies(df, transform=lambda x: x)
tm.assert_frame_equal(result, expected)