|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Pipeline examples\n", |
| 8 | + "\n", |
| 9 | + "This example show quickly how to use pipelines in `redis-py`." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "## Checking that Redis is running" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": 1, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [ |
| 24 | + { |
| 25 | + "data": { |
| 26 | + "text/plain": [ |
| 27 | + "True" |
| 28 | + ] |
| 29 | + }, |
| 30 | + "execution_count": 1, |
| 31 | + "metadata": {}, |
| 32 | + "output_type": "execute_result" |
| 33 | + } |
| 34 | + ], |
| 35 | + "source": [ |
| 36 | + "import redis \n", |
| 37 | + "\n", |
| 38 | + "r = redis.Redis(decode_responses=True)\n", |
| 39 | + "r.ping()" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "## Simple example" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "markdown", |
| 51 | + "metadata": {}, |
| 52 | + "source": [ |
| 53 | + "### Creating a pipeline instance" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": 2, |
| 59 | + "metadata": {}, |
| 60 | + "outputs": [], |
| 61 | + "source": [ |
| 62 | + "pipe = r.pipeline()" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "markdown", |
| 67 | + "metadata": {}, |
| 68 | + "source": [ |
| 69 | + "### Adding commands to the pipeline" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": 3, |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [ |
| 77 | + { |
| 78 | + "data": { |
| 79 | + "text/plain": [ |
| 80 | + "Pipeline<ConnectionPool<Connection<host=localhost,port=6379,db=0>>>" |
| 81 | + ] |
| 82 | + }, |
| 83 | + "execution_count": 3, |
| 84 | + "metadata": {}, |
| 85 | + "output_type": "execute_result" |
| 86 | + } |
| 87 | + ], |
| 88 | + "source": [ |
| 89 | + "pipe.set(\"a\", \"a value\")\n", |
| 90 | + "pipe.set(\"b\", \"b value\")\n", |
| 91 | + "\n", |
| 92 | + "pipe.get(\"a\")" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "markdown", |
| 97 | + "metadata": {}, |
| 98 | + "source": [ |
| 99 | + "### Executing the pipeline" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": 4, |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [ |
| 107 | + { |
| 108 | + "data": { |
| 109 | + "text/plain": [ |
| 110 | + "[True, True, 'a value']" |
| 111 | + ] |
| 112 | + }, |
| 113 | + "execution_count": 4, |
| 114 | + "metadata": {}, |
| 115 | + "output_type": "execute_result" |
| 116 | + } |
| 117 | + ], |
| 118 | + "source": [ |
| 119 | + "pipe.execute()" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "markdown", |
| 124 | + "metadata": {}, |
| 125 | + "source": [ |
| 126 | + "The responses of the three commands are stored in a list. In the above example, the two first boolean indicates that the the `set` commands were successfull and the last element of the list is the result of the `get(\"a\")` comand." |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "markdown", |
| 131 | + "metadata": {}, |
| 132 | + "source": [ |
| 133 | + "## Chained call\n", |
| 134 | + "\n", |
| 135 | + "The same result as above can be obtained in one line of code by chaining the opperations." |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": 5, |
| 141 | + "metadata": {}, |
| 142 | + "outputs": [ |
| 143 | + { |
| 144 | + "data": { |
| 145 | + "text/plain": [ |
| 146 | + "[True, True, 'a value']" |
| 147 | + ] |
| 148 | + }, |
| 149 | + "execution_count": 5, |
| 150 | + "metadata": {}, |
| 151 | + "output_type": "execute_result" |
| 152 | + } |
| 153 | + ], |
| 154 | + "source": [ |
| 155 | + "pipe = r.pipeline()\n", |
| 156 | + "pipe.set(\"a\", \"a value\").set(\"b\", \"b value\").get(\"a\").execute()" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "markdown", |
| 161 | + "metadata": {}, |
| 162 | + "source": [ |
| 163 | + "## Performance comparison\n", |
| 164 | + "\n", |
| 165 | + "Using pipelines can improve performance, for more informations, see [Redis documentation about pipelining](https://redis.io/docs/manual/pipelining/). Here is a simple comparison test of performance between basic and pipelined commands (we simply increment a value and measure the time taken by both method)." |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": 6, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "from datetime import datetime\n", |
| 175 | + "\n", |
| 176 | + "incr_value = 100000" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "markdown", |
| 181 | + "metadata": {}, |
| 182 | + "source": [ |
| 183 | + "### Without pipeline" |
| 184 | + ] |
| 185 | + }, |
| 186 | + { |
| 187 | + "cell_type": "code", |
| 188 | + "execution_count": 7, |
| 189 | + "metadata": {}, |
| 190 | + "outputs": [], |
| 191 | + "source": [ |
| 192 | + "r.set(\"incr_key\", \"0\")\n", |
| 193 | + "\n", |
| 194 | + "start = datetime.now()\n", |
| 195 | + "\n", |
| 196 | + "for _ in range(incr_value):\n", |
| 197 | + " r.incr(\"incr_key\")\n", |
| 198 | + "res_without_pipeline = r.get(\"incr_key\")\n", |
| 199 | + "\n", |
| 200 | + "time_without_pipeline = (datetime.now() - start).total_seconds()" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": 8, |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [ |
| 208 | + { |
| 209 | + "name": "stdout", |
| 210 | + "output_type": "stream", |
| 211 | + "text": [ |
| 212 | + "Without pipeline\n", |
| 213 | + "================\n", |
| 214 | + "Time taken: 21.759733\n", |
| 215 | + "Increment value: 100000\n" |
| 216 | + ] |
| 217 | + } |
| 218 | + ], |
| 219 | + "source": [ |
| 220 | + "print(\"Without pipeline\")\n", |
| 221 | + "print(\"================\")\n", |
| 222 | + "print(\"Time taken: \", time_without_pipeline)\n", |
| 223 | + "print(\"Increment value: \", res_without_pipeline)" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "markdown", |
| 228 | + "metadata": {}, |
| 229 | + "source": [ |
| 230 | + "### With pipeline" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "code", |
| 235 | + "execution_count": 9, |
| 236 | + "metadata": {}, |
| 237 | + "outputs": [], |
| 238 | + "source": [ |
| 239 | + "r.set(\"incr_key\", \"0\")\n", |
| 240 | + "\n", |
| 241 | + "start = datetime.now()\n", |
| 242 | + "\n", |
| 243 | + "pipe = r.pipeline()\n", |
| 244 | + "for _ in range(incr_value):\n", |
| 245 | + " pipe.incr(\"incr_key\")\n", |
| 246 | + "pipe.get(\"incr_key\")\n", |
| 247 | + "res_with_pipeline = pipe.execute()[-1]\n", |
| 248 | + "\n", |
| 249 | + "time_with_pipeline = (datetime.now() - start).total_seconds()" |
| 250 | + ] |
| 251 | + }, |
| 252 | + { |
| 253 | + "cell_type": "code", |
| 254 | + "execution_count": 10, |
| 255 | + "metadata": {}, |
| 256 | + "outputs": [ |
| 257 | + { |
| 258 | + "name": "stdout", |
| 259 | + "output_type": "stream", |
| 260 | + "text": [ |
| 261 | + "With pipeline\n", |
| 262 | + "=============\n", |
| 263 | + "Time taken: 2.357863\n", |
| 264 | + "Increment value: 100000\n" |
| 265 | + ] |
| 266 | + } |
| 267 | + ], |
| 268 | + "source": [ |
| 269 | + "print(\"With pipeline\")\n", |
| 270 | + "print(\"=============\")\n", |
| 271 | + "print(\"Time taken: \", time_with_pipeline)\n", |
| 272 | + "print(\"Increment value: \", res_with_pipeline)" |
| 273 | + ] |
| 274 | + }, |
| 275 | + { |
| 276 | + "cell_type": "markdown", |
| 277 | + "metadata": {}, |
| 278 | + "source": [ |
| 279 | + "Using pipelines provides the same result in much less time." |
| 280 | + ] |
| 281 | + } |
| 282 | + ], |
| 283 | + "metadata": { |
| 284 | + "interpreter": { |
| 285 | + "hash": "84048e2f8e89effc8610b2fb270e4858ef00e9403d223856d62b05266db287ca" |
| 286 | + }, |
| 287 | + "kernelspec": { |
| 288 | + "display_name": "Python 3.9.2 ('.venv': venv)", |
| 289 | + "language": "python", |
| 290 | + "name": "python3" |
| 291 | + }, |
| 292 | + "language_info": { |
| 293 | + "codemirror_mode": { |
| 294 | + "name": "ipython", |
| 295 | + "version": 3 |
| 296 | + }, |
| 297 | + "file_extension": ".py", |
| 298 | + "mimetype": "text/x-python", |
| 299 | + "name": "python", |
| 300 | + "nbconvert_exporter": "python", |
| 301 | + "pygments_lexer": "ipython3", |
| 302 | + "version": "3.9.2" |
| 303 | + }, |
| 304 | + "orig_nbformat": 4 |
| 305 | + }, |
| 306 | + "nbformat": 4, |
| 307 | + "nbformat_minor": 2 |
| 308 | +} |
0 commit comments