forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhashtable.pyx
171 lines (136 loc) · 4.76 KB
/
hashtable.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
cimport cython
from cpython.mem cimport PyMem_Free, PyMem_Malloc
from cpython.ref cimport Py_INCREF, PyObject
from libc.stdlib cimport free, malloc
import numpy as np
cimport numpy as cnp
from numpy cimport float64_t, ndarray, uint8_t, uint32_t
from numpy.math cimport NAN
cnp.import_array()
from pandas._libs cimport util
from pandas._libs.khash cimport (
KHASH_TRACE_DOMAIN,
are_equivalent_float32_t,
are_equivalent_float64_t,
are_equivalent_khcomplex64_t,
are_equivalent_khcomplex128_t,
kh_str_t,
khcomplex64_t,
khcomplex128_t,
khiter_t,
)
from pandas._libs.missing cimport checknull
def get_hashtable_trace_domain():
return KHASH_TRACE_DOMAIN
cdef int64_t NPY_NAT = util.get_nat()
SIZE_HINT_LIMIT = (1 << 20) + 7
cdef Py_ssize_t _INIT_VEC_CAP = 128
include "hashtable_class_helper.pxi"
include "hashtable_func_helper.pxi"
cdef class Factorizer:
cdef public:
PyObjectHashTable table
ObjectVector uniques
Py_ssize_t count
def __init__(self, size_hint):
self.table = PyObjectHashTable(size_hint)
self.uniques = ObjectVector()
self.count = 0
def get_count(self):
return self.count
def factorize(
self, ndarray[object] values, sort=False, na_sentinel=-1, na_value=None
):
"""
Examples
--------
Factorize values with nans replaced by na_sentinel
>>> factorize(np.array([1,2,np.nan], dtype='O'), na_sentinel=20)
array([ 0, 1, 20])
"""
if self.uniques.external_view_exists:
uniques = ObjectVector()
uniques.extend(self.uniques.to_array())
self.uniques = uniques
labels = self.table.get_labels(values, self.uniques,
self.count, na_sentinel, na_value)
mask = (labels == na_sentinel)
# sort on
if sort:
if labels.dtype != np.intp:
labels = labels.astype(np.intp)
sorter = self.uniques.to_array().argsort()
reverse_indexer = np.empty(len(sorter), dtype=np.intp)
reverse_indexer.put(sorter, np.arange(len(sorter)))
labels = reverse_indexer.take(labels, mode='clip')
labels[mask] = na_sentinel
self.count = len(self.uniques)
return labels
def unique(self, ndarray[object] values):
# just for fun
return self.table.unique(values)
cdef class Int64Factorizer:
cdef public:
Int64HashTable table
Int64Vector uniques
Py_ssize_t count
def __init__(self, size_hint):
self.table = Int64HashTable(size_hint)
self.uniques = Int64Vector()
self.count = 0
def get_count(self):
return self.count
def factorize(self, const int64_t[:] values, sort=False,
na_sentinel=-1, na_value=None):
"""
Examples
--------
Factorize values with nans replaced by na_sentinel
>>> factorize(np.array([1,2,np.nan], dtype='O'), na_sentinel=20)
array([ 0, 1, 20])
"""
if self.uniques.external_view_exists:
uniques = Int64Vector()
uniques.extend(self.uniques.to_array())
self.uniques = uniques
labels = self.table.get_labels(values, self.uniques,
self.count, na_sentinel,
na_value=na_value)
# sort on
if sort:
if labels.dtype != np.intp:
labels = labels.astype(np.intp)
sorter = self.uniques.to_array().argsort()
reverse_indexer = np.empty(len(sorter), dtype=np.intp)
reverse_indexer.put(sorter, np.arange(len(sorter)))
labels = reverse_indexer.take(labels)
self.count = len(self.uniques)
return labels
@cython.wraparound(False)
@cython.boundscheck(False)
def unique_label_indices(const int64_t[:] labels):
"""
Indices of the first occurrences of the unique labels
*excluding* -1. equivalent to:
np.unique(labels, return_index=True)[1]
"""
cdef:
int ret = 0
Py_ssize_t i, n = len(labels)
kh_int64_t *table = kh_init_int64()
Int64Vector idx = Int64Vector()
ndarray[int64_t, ndim=1] arr
Int64VectorData *ud = idx.data
kh_resize_int64(table, min(n, SIZE_HINT_LIMIT))
with nogil:
for i in range(n):
kh_put_int64(table, labels[i], &ret)
if ret != 0:
if needs_resize(ud):
with gil:
idx.resize()
append_data_int64(ud, i)
kh_destroy_int64(table)
arr = idx.to_array()
arr = arr[np.asarray(labels)[arr].argsort()]
return arr[1:] if arr.size != 0 and labels[arr[0]] == -1 else arr