forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_interval.py
191 lines (154 loc) · 6.54 KB
/
test_interval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
IntervalIndex,
Series,
)
import pandas._testing as tm
class TestIntervalIndex:
@pytest.fixture
def series_with_interval_index(self):
return Series(np.arange(5), IntervalIndex.from_breaks(np.arange(6)))
def test_getitem_with_scalar(self, series_with_interval_index, indexer_sl):
ser = series_with_interval_index.copy()
expected = ser.iloc[:3]
tm.assert_series_equal(expected, indexer_sl(ser)[:3])
tm.assert_series_equal(expected, indexer_sl(ser)[:2.5])
tm.assert_series_equal(expected, indexer_sl(ser)[0.1:2.5])
if indexer_sl is tm.loc:
tm.assert_series_equal(expected, ser.loc[-1:3])
expected = ser.iloc[1:4]
tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 2.5, 3.5]])
tm.assert_series_equal(expected, indexer_sl(ser)[[2, 3, 4]])
tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 3, 4]])
expected = ser.iloc[2:5]
tm.assert_series_equal(expected, indexer_sl(ser)[ser >= 2])
@pytest.mark.parametrize("direction", ["increasing", "decreasing"])
def test_getitem_nonoverlapping_monotonic(self, direction, closed, indexer_sl):
tpls = [(0, 1), (2, 3), (4, 5)]
if direction == "decreasing":
tpls = tpls[::-1]
idx = IntervalIndex.from_tuples(tpls, closed=closed)
ser = Series(list("abc"), idx)
for key, expected in zip(idx.left, ser):
if idx.closed_left:
assert indexer_sl(ser)[key] == expected
else:
with pytest.raises(KeyError, match=str(key)):
indexer_sl(ser)[key]
for key, expected in zip(idx.right, ser):
if idx.closed_right:
assert indexer_sl(ser)[key] == expected
else:
with pytest.raises(KeyError, match=str(key)):
indexer_sl(ser)[key]
for key, expected in zip(idx.mid, ser):
assert indexer_sl(ser)[key] == expected
def test_getitem_non_matching(self, series_with_interval_index, indexer_sl):
ser = series_with_interval_index.copy()
# this is a departure from our current
# indexing scheme, but simpler
with pytest.raises(KeyError, match=r"\[-1\] not in index"):
indexer_sl(ser)[[-1, 3, 4, 5]]
with pytest.raises(KeyError, match=r"\[-1\] not in index"):
indexer_sl(ser)[[-1, 3]]
@pytest.mark.slow
def test_loc_getitem_large_series(self):
ser = Series(
np.arange(1000000), index=IntervalIndex.from_breaks(np.arange(1000001))
)
result1 = ser.loc[:80000]
result2 = ser.loc[0:80000]
result3 = ser.loc[0:80000:1]
tm.assert_series_equal(result1, result2)
tm.assert_series_equal(result1, result3)
def test_loc_getitem_frame(self):
# CategoricalIndex with IntervalIndex categories
df = DataFrame({"A": range(10)})
ser = pd.cut(df.A, 5)
df["B"] = ser
df = df.set_index("B")
result = df.loc[4]
expected = df.iloc[4:6]
tm.assert_frame_equal(result, expected)
with pytest.raises(KeyError, match="10"):
df.loc[10]
# single list-like
result = df.loc[[4]]
expected = df.iloc[4:6]
tm.assert_frame_equal(result, expected)
# non-unique
result = df.loc[[4, 5]]
expected = df.take([4, 5, 4, 5])
tm.assert_frame_equal(result, expected)
with pytest.raises(KeyError, match=r"None of \[\[10\]\] are"):
df.loc[[10]]
# partial missing
with pytest.raises(KeyError, match=r"\[10\] not in index"):
df.loc[[10, 4]]
def test_getitem_interval_with_nans(self, frame_or_series, indexer_sl):
# GH#41831
index = IntervalIndex([np.nan, np.nan])
key = index[:-1]
obj = frame_or_series(range(2), index=index)
if frame_or_series is DataFrame and indexer_sl is tm.setitem:
obj = obj.T
result = indexer_sl(obj)[key]
expected = obj
tm.assert_equal(result, expected)
class TestIntervalIndexInsideMultiIndex:
def test_mi_intervalindex_slicing_with_scalar(self):
# GH#27456
ii = IntervalIndex.from_arrays(
[0, 1, 10, 11, 0, 1, 10, 11], [1, 2, 11, 12, 1, 2, 11, 12], name="MP"
)
idx = pd.MultiIndex.from_arrays(
[
pd.Index(["FC", "FC", "FC", "FC", "OWNER", "OWNER", "OWNER", "OWNER"]),
pd.Index(
["RID1", "RID1", "RID2", "RID2", "RID1", "RID1", "RID2", "RID2"]
),
ii,
]
)
idx.names = ["Item", "RID", "MP"]
df = DataFrame({"value": [1, 2, 3, 4, 5, 6, 7, 8]})
df.index = idx
query_df = DataFrame(
{
"Item": ["FC", "OWNER", "FC", "OWNER", "OWNER"],
"RID": ["RID1", "RID1", "RID1", "RID2", "RID2"],
"MP": [0.2, 1.5, 1.6, 11.1, 10.9],
}
)
query_df = query_df.sort_index()
idx = pd.MultiIndex.from_arrays([query_df.Item, query_df.RID, query_df.MP])
query_df.index = idx
result = df.value.loc[query_df.index]
# the IntervalIndex level is indexed with floats, which map to
# the intervals containing them. Matching the behavior we would get
# with _only_ an IntervalIndex, we get an IntervalIndex level back.
sliced_level = ii.take([0, 1, 1, 3, 2])
expected_index = pd.MultiIndex.from_arrays(
[idx.get_level_values(0), idx.get_level_values(1), sliced_level]
)
expected = Series([1, 6, 2, 8, 7], index=expected_index, name="value")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"base, expected_result",
[
(10, Series([np.nan, 0], index=[np.nan, 1.0], dtype=np.float64)),
(100, Series([np.nan, 0], index=[np.nan, 1.0], dtype=np.float64)),
(101, Series([np.nan, 0], index=[np.nan, 1.0], dtype=np.float64)),
(1010, Series([np.nan, 0], index=[np.nan, 1.0], dtype=np.float64)),
],
)
def test_reindex_behavior_with_interval_index(self, base, expected_result):
# GH 51826
left = np.arange(base)
right = np.arange(1, base + 1)
d = Series(range(base), index=IntervalIndex.from_arrays(left, right))
result = d.reindex(index=[np.nan, 1.0])
tm.assert_series_equal(result, expected_result)