-
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathdecoder.py
158 lines (142 loc) · 5.62 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, List
from segmentation_models_pytorch.base import modules as md
class DecoderBlock(nn.Module):
def __init__(
self,
in_channels: int,
skip_channels: int,
out_channels: int,
use_batchnorm: bool = True,
attention_type: Optional[str] = None,
):
super().__init__()
self.conv1 = md.Conv2dReLU(
in_channels + skip_channels,
out_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
)
self.attention1 = md.Attention(
attention_type, in_channels=in_channels + skip_channels
)
self.conv2 = md.Conv2dReLU(
out_channels,
out_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
)
self.attention2 = md.Attention(attention_type, in_channels=out_channels)
def forward(
self, x: torch.Tensor, skip: Optional[torch.Tensor] = None
) -> torch.Tensor:
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
if skip is not None:
x = torch.cat([x, skip], dim=1)
x = self.attention1(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.attention2(x)
return x
class CenterBlock(nn.Sequential):
def __init__(self, in_channels: int, out_channels: int, use_batchnorm: bool = True):
conv1 = md.Conv2dReLU(
in_channels,
out_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
)
conv2 = md.Conv2dReLU(
out_channels,
out_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
)
super().__init__(conv1, conv2)
class UnetPlusPlusDecoder(nn.Module):
def __init__(
self,
encoder_channels: List[int],
decoder_channels: List[int],
n_blocks: int = 5,
use_batchnorm: bool = True,
attention_type: Optional[str] = None,
center: bool = False,
):
super().__init__()
if n_blocks != len(decoder_channels):
raise ValueError(
f"Model depth is {n_blocks}, but you provide `decoder_channels` for {len(decoder_channels)} blocks."
)
# remove first skip with same spatial resolution
encoder_channels = encoder_channels[1:]
# reverse channels to start from head of encoder
encoder_channels = encoder_channels[::-1]
# computing blocks input and output channels
head_channels = encoder_channels[0]
self.in_channels = [head_channels] + list(decoder_channels[:-1])
self.skip_channels = list(encoder_channels[1:]) + [0]
self.out_channels = decoder_channels
if center:
self.center = CenterBlock(
head_channels, head_channels, use_batchnorm=use_batchnorm
)
else:
self.center = nn.Identity()
# combine decoder keyword arguments
kwargs = dict(use_batchnorm=use_batchnorm, attention_type=attention_type)
blocks = {}
for layer_idx in range(len(self.in_channels) - 1):
for depth_idx in range(layer_idx + 1):
if depth_idx == 0:
in_ch = self.in_channels[layer_idx]
skip_ch = self.skip_channels[layer_idx] * (layer_idx + 1)
out_ch = self.out_channels[layer_idx]
else:
out_ch = self.skip_channels[layer_idx]
skip_ch = self.skip_channels[layer_idx] * (
layer_idx + 1 - depth_idx
)
in_ch = self.skip_channels[layer_idx - 1]
blocks[f"x_{depth_idx}_{layer_idx}"] = DecoderBlock(
in_ch, skip_ch, out_ch, **kwargs
)
blocks[f"x_{0}_{len(self.in_channels) - 1}"] = DecoderBlock(
self.in_channels[-1], 0, self.out_channels[-1], **kwargs
)
self.blocks = nn.ModuleDict(blocks)
self.depth = len(self.in_channels) - 1
def forward(self, features: List[torch.Tensor]) -> torch.Tensor:
features = features[1:] # remove first skip with same spatial resolution
features = features[::-1] # reverse channels to start from head of encoder
# start building dense connections
dense_x = {}
for layer_idx in range(len(self.in_channels) - 1):
for depth_idx in range(self.depth - layer_idx):
if layer_idx == 0:
output = self.blocks[f"x_{depth_idx}_{depth_idx}"](
features[depth_idx], features[depth_idx + 1]
)
dense_x[f"x_{depth_idx}_{depth_idx}"] = output
else:
dense_l_i = depth_idx + layer_idx
cat_features = [
dense_x[f"x_{idx}_{dense_l_i}"]
for idx in range(depth_idx + 1, dense_l_i + 1)
]
cat_features = torch.cat(
cat_features + [features[dense_l_i + 1]], dim=1
)
dense_x[f"x_{depth_idx}_{dense_l_i}"] = self.blocks[
f"x_{depth_idx}_{dense_l_i}"
](dense_x[f"x_{depth_idx}_{dense_l_i - 1}"], cat_features)
dense_x[f"x_{0}_{self.depth}"] = self.blocks[f"x_{0}_{self.depth}"](
dense_x[f"x_{0}_{self.depth - 1}"]
)
return dense_x[f"x_{0}_{self.depth}"]