-
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathtest_models.py
143 lines (113 loc) · 4.67 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import sys
import mock
import pytest
import torch
# mock detection module
sys.modules["torchvision._C"] = mock.Mock()
import segmentation_models_pytorch as smp # noqa
def get_encoders():
exclude_encoders = [
"senet154",
"resnext101_32x16d",
"resnext101_32x32d",
"resnext101_32x48d",
"sam-vit_h",
"sam-vit_l",
"sam-vit_b",
]
encoders = smp.encoders.get_encoder_names()
encoders = [e for e in encoders if e not in exclude_encoders]
encoders.append("tu-resnet34") # for timm universal encoder
return encoders
ENCODERS = get_encoders()
DEFAULT_ENCODER = "resnet18"
def get_sample(model_class):
if model_class in [smp.Unet, smp.Linknet, smp.FPN, smp.PSPNet, smp.UnetPlusPlus, smp.MAnet]:
sample = torch.ones([1, 3, 64, 64])
elif model_class == smp.PAN:
sample = torch.ones([2, 3, 256, 256])
elif model_class == smp.DeepLabV3:
sample = torch.ones([2, 3, 128, 128])
else:
raise ValueError("Not supported model class {}".format(model_class))
return sample
def _test_forward(model, sample, test_shape=False):
with torch.no_grad():
out = model(sample)
if test_shape:
assert out.shape[2:] == sample.shape[2:]
def _test_forward_backward(model, sample, test_shape=False):
out = model(sample)
out.mean().backward()
if test_shape:
assert out.shape[2:] == sample.shape[2:]
@pytest.mark.parametrize("encoder_name", ENCODERS)
@pytest.mark.parametrize("encoder_depth", [3, 5])
@pytest.mark.parametrize("model_class", [smp.FPN, smp.PSPNet, smp.Linknet, smp.Unet, smp.UnetPlusPlus])
def test_forward(model_class, encoder_name, encoder_depth, **kwargs):
if model_class is smp.Unet or model_class is smp.UnetPlusPlus or model_class is smp.MAnet:
kwargs["decoder_channels"] = (16, 16, 16, 16, 16)[-encoder_depth:]
if model_class in [smp.UnetPlusPlus, smp.Linknet] and encoder_name.startswith("mit_b"):
return # skip mit_b*
if model_class is smp.FPN and encoder_name.startswith("mit_b") and encoder_depth != 5:
return # skip mit_b*
model = model_class(encoder_name, encoder_depth=encoder_depth, encoder_weights=None, **kwargs)
sample = get_sample(model_class)
model.eval()
if encoder_depth == 5 and model_class != smp.PSPNet:
test_shape = True
else:
test_shape = False
_test_forward(model, sample, test_shape)
@pytest.mark.parametrize(
"model_class", [smp.PAN, smp.FPN, smp.PSPNet, smp.Linknet, smp.Unet, smp.UnetPlusPlus, smp.MAnet, smp.DeepLabV3]
)
def test_forward_backward(model_class):
sample = get_sample(model_class)
model = model_class(DEFAULT_ENCODER, encoder_weights=None)
_test_forward_backward(model, sample)
@pytest.mark.parametrize(
"model_class", [smp.PAN, smp.FPN, smp.PSPNet, smp.Linknet, smp.Unet, smp.UnetPlusPlus, smp.MAnet]
)
def test_aux_output(model_class):
model = model_class(DEFAULT_ENCODER, encoder_weights=None, aux_params=dict(classes=2))
sample = get_sample(model_class)
label_size = (sample.shape[0], 2)
mask, label = model(sample)
assert label.size() == label_size
@pytest.mark.parametrize("upsampling", [2, 4, 8])
@pytest.mark.parametrize("model_class", [smp.FPN, smp.PSPNet])
def test_upsample(model_class, upsampling):
default_upsampling = 4 if model_class is smp.FPN else 8
model = model_class(DEFAULT_ENCODER, encoder_weights=None, upsampling=upsampling)
sample = get_sample(model_class)
mask = model(sample)
assert mask.size()[-1] / 64 == upsampling / default_upsampling
@pytest.mark.parametrize("model_class", [smp.FPN])
@pytest.mark.parametrize("in_channels", [1, 2, 4])
def test_in_channels(model_class, in_channels):
sample = torch.ones([1, in_channels, 64, 64])
model = model_class(DEFAULT_ENCODER, encoder_weights=None, in_channels=in_channels)
model.eval()
with torch.no_grad():
model(sample)
assert model.encoder._in_channels == in_channels
@pytest.mark.parametrize("encoder_name", ENCODERS)
def test_dilation(encoder_name):
if (
encoder_name in ["inceptionresnetv2", "xception", "inceptionv4"]
or encoder_name.startswith("vgg")
or encoder_name.startswith("densenet")
or encoder_name.startswith("timm-res")
or encoder_name.startswith("mit_b")
):
return
encoder = smp.encoders.get_encoder(encoder_name, output_stride=16)
encoder.eval()
with torch.no_grad():
sample = torch.ones([1, 3, 64, 64])
output = encoder(sample)
shapes = [out.shape[-1] for out in output]
assert shapes == [64, 32, 16, 8, 4, 4] # last downsampling replaced with dilation
if __name__ == "__main__":
pytest.main([__file__])