-
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathmodel.py
97 lines (82 loc) · 3.94 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from typing import Optional, Union
from segmentation_models_pytorch.encoders import get_encoder
from segmentation_models_pytorch.base import (
SegmentationModel,
SegmentationHead,
ClassificationHead,
)
from .decoder import PANDecoder
class PAN(SegmentationModel):
"""Implementation of PAN_ (Pyramid Attention Network).
Note:
Currently works with shape of input tensor >= [B x C x 128 x 128] for pytorch <= 1.1.0
and with shape of input tensor >= [B x C x 256 x 256] for pytorch == 1.3.1
Args:
encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone)
to extract features of different spatial resolution
encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and
other pretrained weights (see table with available weights for each encoder_name)
encoder_output_stride: 16 or 32, if 16 use dilation in encoder last layer.
Doesn't work with ***ception***, **vgg***, **densenet*`** backbones.Default is 16.
decoder_channels: A number of convolution layer filters in decoder blocks
in_channels: A number of input channels for the model, default is 3 (RGB images)
classes: A number of classes for output mask (or you can think as a number of channels of output mask)
activation: An activation function to apply after the final convolution layer.
Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**,
**callable** and **None**.
Default is **None**
upsampling: Final upsampling factor. Default is 4 to preserve input-output spatial shape identity
aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build
on top of encoder if **aux_params** is not **None** (default). Supported params:
- classes (int): A number of classes
- pooling (str): One of "max", "avg". Default is "avg"
- dropout (float): Dropout factor in [0, 1)
- activation (str): An activation function to apply "sigmoid"/"softmax"
(could be **None** to return logits)
Returns:
``torch.nn.Module``: **PAN**
.. _PAN:
https://arxiv.org/abs/1805.10180
"""
def __init__(
self,
encoder_name: str = "resnet34",
encoder_weights: Optional[str] = "imagenet",
encoder_output_stride: int = 16,
decoder_channels: int = 32,
in_channels: int = 3,
classes: int = 1,
activation: Optional[Union[str, callable]] = None,
upsampling: int = 4,
aux_params: Optional[dict] = None,
encoder_kwargs: Optional[dict] = None,
encoder_depth: int = 5,
):
super().__init__()
if encoder_output_stride not in [16, 32]:
raise ValueError("PAN support output stride 16 or 32, got {}".format(encoder_output_stride))
self.encoder = get_encoder(
encoder_name,
in_channels=in_channels,
depth=encoder_depth,
weights=encoder_weights,
output_stride=encoder_output_stride,
**({} if encoder_kwargs is None else encoder_kwargs),
)
self.decoder = PANDecoder(
encoder_channels=self.encoder.out_channels,
decoder_channels=decoder_channels,
)
self.segmentation_head = SegmentationHead(
in_channels=decoder_channels,
out_channels=classes,
activation=activation,
kernel_size=3,
upsampling=upsampling,
)
if aux_params is not None:
self.classification_head = ClassificationHead(in_channels=self.encoder.out_channels[-1], **aux_params)
else:
self.classification_head = None
self.name = "pan-{}".format(encoder_name)
self.initialize()