-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy path074. 搜索二维矩阵.js
58 lines (51 loc) · 1.44 KB
/
074. 搜索二维矩阵.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/**
* Created by Administrator on 2018/5/14.
*/
/**编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
* 每行中的整数从左到右按升序排列。
* 每行的第一个整数大于前一行的最后一个整数。
*
* 输入:
* matrix = [
* [1, 3, 5, 7],
* [10, 11, 16, 20],
* [23, 30, 34, 50]
* ]
* target = 3
* 输出: true
*/
/**实际上m、n的大小对总花费时间没影响,都是log m*n 的复杂度
* @param {number[][]} matrix
* @param {number} target
* @return {boolean}
*/
var searchMatrix = function(matrix, target) {
if (!matrix.length) return false;
let m = matrix.length;
let n = matrix[0].length;
// 先找到所在的行minRow
let minRow = 0;
let maxRow = m - 1;
while (minRow <= maxRow) {
let midRow = (minRow + maxRow) >> 1;
matrix[midRow][0] > target ? maxRow = midRow - 1 : minRow = midRow + 1;
}
//当判断条件是>时,较大者数值会更逼近于想找的值,返回值为较大者
console.log(maxRow)
if (maxRow > m - 1 || maxRow < 0) return false;
//再找到所在的列
let min = 0;
let max = n - 1;
while (min <= max) {
let mid = (min + max) >> 1;
matrix[maxRow][mid] > target ? max = mid - 1 : min = mid + 1;
}
console.log(max)
return matrix[maxRow][max] === target;
};
let matrix = [
[1, 5, 8, 9],
[10, 11, 16, 17],
[18, 19, 100, 101]
];
console.log(searchMatrix(matrix, 0))