|
| 1 | +import ctypes |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +from numba.core import cgutils, types |
| 5 | +from numba.core.extending import get_cython_function_address, intrinsic |
| 6 | +from numba.np.linalg import ensure_lapack, get_blas_kind |
| 7 | + |
| 8 | + |
| 9 | +_PTR = ctypes.POINTER |
| 10 | + |
| 11 | +_dbl = ctypes.c_double |
| 12 | +_float = ctypes.c_float |
| 13 | +_char = ctypes.c_char |
| 14 | +_int = ctypes.c_int |
| 15 | + |
| 16 | +_ptr_float = _PTR(_float) |
| 17 | +_ptr_dbl = _PTR(_dbl) |
| 18 | +_ptr_char = _PTR(_char) |
| 19 | +_ptr_int = _PTR(_int) |
| 20 | + |
| 21 | + |
| 22 | +def _get_lapack_ptr_and_ptr_type(dtype, name): |
| 23 | + d = get_blas_kind(dtype) |
| 24 | + func_name = f"{d}{name}" |
| 25 | + float_pointer = _get_float_pointer_for_dtype(d) |
| 26 | + lapack_ptr = get_cython_function_address("scipy.linalg.cython_lapack", func_name) |
| 27 | + |
| 28 | + return lapack_ptr, float_pointer |
| 29 | + |
| 30 | + |
| 31 | +def _get_underlying_float(dtype): |
| 32 | + s_dtype = str(dtype) |
| 33 | + out_type = s_dtype |
| 34 | + if s_dtype == "complex64": |
| 35 | + out_type = "float32" |
| 36 | + elif s_dtype == "complex128": |
| 37 | + out_type = "float64" |
| 38 | + |
| 39 | + return np.dtype(out_type) |
| 40 | + |
| 41 | + |
| 42 | +def _get_float_pointer_for_dtype(blas_dtype): |
| 43 | + if blas_dtype in ["s", "c"]: |
| 44 | + return _ptr_float |
| 45 | + elif blas_dtype in ["d", "z"]: |
| 46 | + return _ptr_dbl |
| 47 | + |
| 48 | + |
| 49 | +def _get_output_ctype(dtype): |
| 50 | + s_dtype = str(dtype) |
| 51 | + if s_dtype in ["float32", "complex64"]: |
| 52 | + return _float |
| 53 | + elif s_dtype in ["float64", "complex128"]: |
| 54 | + return _dbl |
| 55 | + |
| 56 | + |
| 57 | +@intrinsic |
| 58 | +def sptr_to_val(typingctx, data): |
| 59 | + def impl(context, builder, signature, args): |
| 60 | + val = builder.load(args[0]) |
| 61 | + return val |
| 62 | + |
| 63 | + sig = types.float32(types.CPointer(types.float32)) |
| 64 | + return sig, impl |
| 65 | + |
| 66 | + |
| 67 | +@intrinsic |
| 68 | +def dptr_to_val(typingctx, data): |
| 69 | + def impl(context, builder, signature, args): |
| 70 | + val = builder.load(args[0]) |
| 71 | + return val |
| 72 | + |
| 73 | + sig = types.float64(types.CPointer(types.float64)) |
| 74 | + return sig, impl |
| 75 | + |
| 76 | + |
| 77 | +@intrinsic |
| 78 | +def int_ptr_to_val(typingctx, data): |
| 79 | + def impl(context, builder, signature, args): |
| 80 | + val = builder.load(args[0]) |
| 81 | + return val |
| 82 | + |
| 83 | + sig = types.int32(types.CPointer(types.int32)) |
| 84 | + return sig, impl |
| 85 | + |
| 86 | + |
| 87 | +@intrinsic |
| 88 | +def val_to_int_ptr(typingctx, data): |
| 89 | + def impl(context, builder, signature, args): |
| 90 | + ptr = cgutils.alloca_once_value(builder, args[0]) |
| 91 | + return ptr |
| 92 | + |
| 93 | + sig = types.CPointer(types.int32)(types.int32) |
| 94 | + return sig, impl |
| 95 | + |
| 96 | + |
| 97 | +@intrinsic |
| 98 | +def val_to_sptr(typingctx, data): |
| 99 | + def impl(context, builder, signature, args): |
| 100 | + ptr = cgutils.alloca_once_value(builder, args[0]) |
| 101 | + return ptr |
| 102 | + |
| 103 | + sig = types.CPointer(types.float32)(types.float32) |
| 104 | + return sig, impl |
| 105 | + |
| 106 | + |
| 107 | +@intrinsic |
| 108 | +def val_to_zptr(typingctx, data): |
| 109 | + def impl(context, builder, signature, args): |
| 110 | + ptr = cgutils.alloca_once_value(builder, args[0]) |
| 111 | + return ptr |
| 112 | + |
| 113 | + sig = types.CPointer(types.complex128)(types.complex128) |
| 114 | + return sig, impl |
| 115 | + |
| 116 | + |
| 117 | +@intrinsic |
| 118 | +def val_to_dptr(typingctx, data): |
| 119 | + def impl(context, builder, signature, args): |
| 120 | + ptr = cgutils.alloca_once_value(builder, args[0]) |
| 121 | + return ptr |
| 122 | + |
| 123 | + sig = types.CPointer(types.float64)(types.float64) |
| 124 | + return sig, impl |
| 125 | + |
| 126 | + |
| 127 | +class _LAPACK: |
| 128 | + """ |
| 129 | + Functions to return type signatures for wrapped LAPACK functions. |
| 130 | +
|
| 131 | + Patterned after https://github.com/numba/numba/blob/bd7ebcfd4b850208b627a3f75d4706000be36275/numba/np/linalg.py#L74 |
| 132 | + """ |
| 133 | + |
| 134 | + def __init__(self): |
| 135 | + ensure_lapack() |
| 136 | + |
| 137 | + @classmethod |
| 138 | + def numba_xtrtrs(cls, dtype): |
| 139 | + """ |
| 140 | + Solve a triangular system of equations of the form A @ X = B or A.T @ X = B. |
| 141 | +
|
| 142 | + Called by scipy.linalg.solve_triangular |
| 143 | + """ |
| 144 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "trtrs") |
| 145 | + |
| 146 | + functype = ctypes.CFUNCTYPE( |
| 147 | + None, |
| 148 | + _ptr_int, # UPLO |
| 149 | + _ptr_int, # TRANS |
| 150 | + _ptr_int, # DIAG |
| 151 | + _ptr_int, # N |
| 152 | + _ptr_int, # NRHS |
| 153 | + float_pointer, # A |
| 154 | + _ptr_int, # LDA |
| 155 | + float_pointer, # B |
| 156 | + _ptr_int, # LDB |
| 157 | + _ptr_int, # INFO |
| 158 | + ) |
| 159 | + |
| 160 | + return functype(lapack_ptr) |
| 161 | + |
| 162 | + @classmethod |
| 163 | + def numba_xpotrf(cls, dtype): |
| 164 | + """ |
| 165 | + Compute the Cholesky factorization of a real symmetric positive definite matrix. |
| 166 | +
|
| 167 | + Called by scipy.linalg.cholesky |
| 168 | + """ |
| 169 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "potrf") |
| 170 | + functype = ctypes.CFUNCTYPE( |
| 171 | + None, |
| 172 | + _ptr_int, # UPLO, |
| 173 | + _ptr_int, # N |
| 174 | + float_pointer, # A |
| 175 | + _ptr_int, # LDA |
| 176 | + _ptr_int, # INFO |
| 177 | + ) |
| 178 | + return functype(lapack_ptr) |
| 179 | + |
| 180 | + @classmethod |
| 181 | + def numba_xpotrs(cls, dtype): |
| 182 | + """ |
| 183 | + Solve a system of linear equations A @ X = B with a symmetric positive definite matrix A using the Cholesky |
| 184 | + factorization computed by numba_potrf. |
| 185 | +
|
| 186 | + Called by scipy.linalg.cho_solve |
| 187 | + """ |
| 188 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "potrs") |
| 189 | + functype = ctypes.CFUNCTYPE( |
| 190 | + None, |
| 191 | + _ptr_int, # UPLO |
| 192 | + _ptr_int, # N |
| 193 | + _ptr_int, # NRHS |
| 194 | + float_pointer, # A |
| 195 | + _ptr_int, # LDA |
| 196 | + float_pointer, # B |
| 197 | + _ptr_int, # LDB |
| 198 | + _ptr_int, # INFO |
| 199 | + ) |
| 200 | + return functype(lapack_ptr) |
| 201 | + |
| 202 | + @classmethod |
| 203 | + def numba_xlange(cls, dtype): |
| 204 | + """ |
| 205 | + Compute the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of |
| 206 | + a general M-by-N matrix A. |
| 207 | +
|
| 208 | + Called by scipy.linalg.solve |
| 209 | + """ |
| 210 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "lange") |
| 211 | + output_ctype = _get_output_ctype(dtype) |
| 212 | + functype = ctypes.CFUNCTYPE( |
| 213 | + output_ctype, # Output |
| 214 | + _ptr_int, # NORM |
| 215 | + _ptr_int, # M |
| 216 | + _ptr_int, # N |
| 217 | + float_pointer, # A |
| 218 | + _ptr_int, # LDA |
| 219 | + float_pointer, # WORK |
| 220 | + ) |
| 221 | + return functype(lapack_ptr) |
| 222 | + |
| 223 | + @classmethod |
| 224 | + def numba_xlamch(cls, dtype): |
| 225 | + """ |
| 226 | + Determine machine precision for floating point arithmetic. |
| 227 | + """ |
| 228 | + |
| 229 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "lamch") |
| 230 | + output_dtype = _get_output_ctype(dtype) |
| 231 | + functype = ctypes.CFUNCTYPE( |
| 232 | + output_dtype, # Output |
| 233 | + _ptr_int, # CMACH |
| 234 | + ) |
| 235 | + return functype(lapack_ptr) |
| 236 | + |
| 237 | + @classmethod |
| 238 | + def numba_xgecon(cls, dtype): |
| 239 | + """ |
| 240 | + Estimates the condition number of a matrix A, using the LU factorization computed by numba_getrf. |
| 241 | +
|
| 242 | + Called by scipy.linalg.solve when assume_a == "gen" |
| 243 | + """ |
| 244 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "gecon") |
| 245 | + functype = ctypes.CFUNCTYPE( |
| 246 | + None, |
| 247 | + _ptr_int, # NORM |
| 248 | + _ptr_int, # N |
| 249 | + float_pointer, # A |
| 250 | + _ptr_int, # LDA |
| 251 | + float_pointer, # ANORM |
| 252 | + float_pointer, # RCOND |
| 253 | + float_pointer, # WORK |
| 254 | + _ptr_int, # IWORK |
| 255 | + _ptr_int, # INFO |
| 256 | + ) |
| 257 | + return functype(lapack_ptr) |
| 258 | + |
| 259 | + @classmethod |
| 260 | + def numba_xgetrf(cls, dtype): |
| 261 | + """ |
| 262 | + Compute partial pivoting LU factorization of a general M-by-N matrix A using row interchanges. |
| 263 | +
|
| 264 | + Called by scipy.linalg.lu_factor |
| 265 | + """ |
| 266 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "getrf") |
| 267 | + functype = ctypes.CFUNCTYPE( |
| 268 | + None, |
| 269 | + _ptr_int, # M |
| 270 | + _ptr_int, # N |
| 271 | + float_pointer, # A |
| 272 | + _ptr_int, # LDA |
| 273 | + _ptr_int, # IPIV |
| 274 | + _ptr_int, # INFO |
| 275 | + ) |
| 276 | + return functype(lapack_ptr) |
| 277 | + |
| 278 | + @classmethod |
| 279 | + def numba_xgetrs(cls, dtype): |
| 280 | + """ |
| 281 | + Solve a system of linear equations A @ X = B or A.T @ X = B with a general N-by-N matrix A using the LU |
| 282 | + factorization computed by GETRF. |
| 283 | +
|
| 284 | + Called by scipy.linalg.lu_solve |
| 285 | + """ |
| 286 | + ... |
| 287 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "getrs") |
| 288 | + functype = ctypes.CFUNCTYPE( |
| 289 | + None, |
| 290 | + _ptr_int, # TRANS |
| 291 | + _ptr_int, # N |
| 292 | + _ptr_int, # NRHS |
| 293 | + float_pointer, # A |
| 294 | + _ptr_int, # LDA |
| 295 | + _ptr_int, # IPIV |
| 296 | + float_pointer, # B |
| 297 | + _ptr_int, # LDB |
| 298 | + _ptr_int, # INFO |
| 299 | + ) |
| 300 | + return functype(lapack_ptr) |
| 301 | + |
| 302 | + @classmethod |
| 303 | + def numba_xsysv(cls, dtype): |
| 304 | + """ |
| 305 | + Solve a system of linear equations A @ X = B with a symmetric matrix A using the diagonal pivoting method, |
| 306 | + factorizing A into LDL^T or UDU^T form, depending on the value of UPLO |
| 307 | +
|
| 308 | + Called by scipy.linalg.solve when assume_a == "sym" |
| 309 | + """ |
| 310 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "sysv") |
| 311 | + functype = ctypes.CFUNCTYPE( |
| 312 | + None, |
| 313 | + _ptr_int, # UPLO |
| 314 | + _ptr_int, # N |
| 315 | + _ptr_int, # NRHS |
| 316 | + float_pointer, # A |
| 317 | + _ptr_int, # LDA |
| 318 | + _ptr_int, # IPIV |
| 319 | + float_pointer, # B |
| 320 | + _ptr_int, # LDB |
| 321 | + float_pointer, # WORK |
| 322 | + _ptr_int, # LWORK |
| 323 | + _ptr_int, # INFO |
| 324 | + ) |
| 325 | + return functype(lapack_ptr) |
| 326 | + |
| 327 | + @classmethod |
| 328 | + def numba_xsycon(cls, dtype): |
| 329 | + """ |
| 330 | + Estimate the reciprocal of the condition number of a symmetric matrix A using the UDU or LDL factorization |
| 331 | + computed by xSYTRF. |
| 332 | + """ |
| 333 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "sycon") |
| 334 | + |
| 335 | + functype = ctypes.CFUNCTYPE( |
| 336 | + None, |
| 337 | + _ptr_int, # UPLO |
| 338 | + _ptr_int, # N |
| 339 | + float_pointer, # A |
| 340 | + _ptr_int, # LDA |
| 341 | + _ptr_int, # IPIV |
| 342 | + float_pointer, # ANORM |
| 343 | + float_pointer, # RCOND |
| 344 | + float_pointer, # WORK |
| 345 | + _ptr_int, # IWORK |
| 346 | + _ptr_int, # INFO |
| 347 | + ) |
| 348 | + return functype(lapack_ptr) |
| 349 | + |
| 350 | + @classmethod |
| 351 | + def numba_xpocon(cls, dtype): |
| 352 | + """ |
| 353 | + Estimates the reciprocal of the condition number of a positive definite matrix A using the Cholesky factorization |
| 354 | + computed by potrf. |
| 355 | +
|
| 356 | + Called by scipy.linalg.solve when assume_a == "pos" |
| 357 | + """ |
| 358 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "pocon") |
| 359 | + functype = ctypes.CFUNCTYPE( |
| 360 | + None, |
| 361 | + _ptr_int, # UPLO |
| 362 | + _ptr_int, # N |
| 363 | + float_pointer, # A |
| 364 | + _ptr_int, # LDA |
| 365 | + float_pointer, # ANORM |
| 366 | + float_pointer, # RCOND |
| 367 | + float_pointer, # WORK |
| 368 | + _ptr_int, # IWORK |
| 369 | + _ptr_int, # INFO |
| 370 | + ) |
| 371 | + return functype(lapack_ptr) |
| 372 | + |
| 373 | + @classmethod |
| 374 | + def numba_xposv(cls, dtype): |
| 375 | + """ |
| 376 | + Solve a system of linear equations A @ X = B with a symmetric positive definite matrix A using the Cholesky |
| 377 | + factorization computed by potrf. |
| 378 | + """ |
| 379 | + |
| 380 | + lapack_ptr, float_pointer = _get_lapack_ptr_and_ptr_type(dtype, "posv") |
| 381 | + functype = ctypes.CFUNCTYPE( |
| 382 | + None, |
| 383 | + _ptr_int, # UPLO |
| 384 | + _ptr_int, # N |
| 385 | + _ptr_int, # NRHS |
| 386 | + float_pointer, # A |
| 387 | + _ptr_int, # LDA |
| 388 | + float_pointer, # B |
| 389 | + _ptr_int, # LDB |
| 390 | + _ptr_int, # INFO |
| 391 | + ) |
| 392 | + return functype(lapack_ptr) |
0 commit comments