diff --git a/pymc/distributions/continuous.py b/pymc/distributions/continuous.py index 8b9a0f1529..e629170c8d 100644 --- a/pymc/distributions/continuous.py +++ b/pymc/distributions/continuous.py @@ -645,6 +645,7 @@ class TruncatedNormal(BoundedContinuous): .. plot:: + :context: close-figs import matplotlib.pyplot as plt import numpy as np @@ -673,13 +674,16 @@ class TruncatedNormal(BoundedContinuous): Parameters ---------- - mu: float + mu : tensor_like of float, default 0 Mean. - sigma: float - Standard deviation (sigma > 0). - lower: float (optional) + sigma : tensor_like of float, optional + Standard deviation (sigma > 0) (only required if tau is not specified). + Defaults to 1 if neither sigma nor tau is specified. + tau : tensor_like of float, optional + Precision (tau > 0) (only required if sigma is not specified). + lower : tensor_like of float, default - numpy.inf Left bound. - upper: float (optional) + upper : tensor_like of float, default numpy.inf Right bound. Examples @@ -709,7 +713,6 @@ def dist( sd: Optional[DIST_PARAMETER_TYPES] = None, lower: Optional[DIST_PARAMETER_TYPES] = None, upper: Optional[DIST_PARAMETER_TYPES] = None, - transform: str = "auto", *args, **kwargs, ) -> RandomVariable: @@ -762,9 +765,9 @@ def logp( Parameters ---------- - value: numeric + value : tensor_like of float Value(s) for which log-probability is calculated. If the log probabilities for multiple - values are desired the values must be provided in a numpy array or Aesara tensor + values are desired the values must be provided in a numpy array or Aesara tensor. Returns -------