diff --git a/pymc/distributions/continuous.py b/pymc/distributions/continuous.py index 45f4544e6d..b01eefb4d2 100644 --- a/pymc/distributions/continuous.py +++ b/pymc/distributions/continuous.py @@ -2340,7 +2340,7 @@ def logcdf(value, alpha, inv_beta): Parameters ---------- - value : tensor_like + value : tensor_like of float Value(s) for which log CDF is calculated. If the log CDF for multiple values are desired the values must be provided in a numpy array or `TensorVariable`. @@ -2372,6 +2372,7 @@ class InverseGamma(PositiveContinuous): \exp\left(\frac{-\beta}{x}\right) .. plot:: + :context: close-figs import matplotlib.pyplot as plt import numpy as np @@ -2398,13 +2399,13 @@ class InverseGamma(PositiveContinuous): Parameters ---------- - alpha: float + alpha : tensor_like of float, optional Shape parameter (alpha > 0). - beta: float + beta : tensor_like of float, optional Scale parameter (beta > 0). - mu: float + mu : tensor_like of float, optional Alternative shape parameter (mu > 0). - sigma: float + sigma : tensor_like of float, optional Alternative scale parameter (sigma > 0). """ rv_op = invgamma @@ -2460,14 +2461,19 @@ def _distr_parameters_for_repr(self): def logcdf(value, alpha, beta): """ - Compute the log of the cumulative distribution function for Inverse Gamma distribution - at the specified value. + Compute the log of the cumulative distribution function for Inverse Gamma + distribution at the specified value. Parameters ---------- - value: numeric or np.ndarray or aesara.tensor + value : tensor_like of float Value(s) for which log CDF is calculated. If the log CDF for multiple - values are desired the values must be provided in a numpy array or Aesara tensor. + values are desired the values must be provided in a numpy array or Aesara + tensor. + alpha : tensor_like of float + Shape parameter (alpha > 0). + beta : tensor_like of float + Scale parameter (beta > 0). Returns -------