diff --git a/docs/source/examples.rst b/docs/source/examples.rst
index 3dfa13cc29..f5614180ee 100644
--- a/docs/source/examples.rst
+++ b/docs/source/examples.rst
@@ -12,6 +12,8 @@ Howto
notebooks/sampler-stats.ipynb
notebooks/Diagnosing_biased_Inference_with_Divergences.ipynb
notebooks/posterior_predictive.ipynb
+ notebooks/model_comparison.ipynb
+ notebooks/model_averaging.ipynb
notebooks/howto_debugging.ipynb
notebooks/PyMC3_tips_and_heuristic.ipynb
notebooks/LKJ.ipynb
diff --git a/docs/source/notebooks/model_averaging.ipynb b/docs/source/notebooks/model_averaging.ipynb
new file mode 100644
index 0000000000..ff43209701
--- /dev/null
+++ b/docs/source/notebooks/model_averaging.ipynb
@@ -0,0 +1,495 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "plt.style.use(['seaborn-darkgrid', 'seaborn-colorblind'])\n",
+ "import pymc3 as pm\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from theano import shared"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "When confronted with more than one model we have several options. One of them is to perform model selection, using for example a given Information Criterion as exemplified [in this notebook](model_comparsion.ipynb) and this other [example](model_comparsion.ipynb). Model selection is appealing for its simplicity, but we are discarding information about the uncertainty in our models. This is somehow similar to computing the full posterior and then keep just keep a point-estimate like the posterior mean; we may become overconfident of what we really know.\n",
+ "\n",
+ "One alternative is to perform model selection but discuss the all the different models together with the computed values of a given Information Criterion. It is important to put all these numbers and tests in the context of our problem so that we and our audience can have a better feeling of the possible limitations and shortcomings of our methods. If you are in the academic world you can use this approach to add elements to the discussion section of a paper, presentation, thesis, and so on.\n",
+ "\n",
+ "Yet another approach is to perform model averaging. The idea now is to generate a meta-model (and meta-predictions) using a weighted average of the models. One way to compute these weights is to apply this formula:\n",
+ "\n",
+ "$$w_i = \\frac {e^{ \\frac{1}{2} dIC_i }} {\\sum_j^M e^{ - \\frac{1}{2} dIC_j }}$$\n",
+ "\n",
+ "Where $dIC_i$ is the difference between the i-esim information criterion value and the lowest one. Remember that the lowest the value of the IC, the better. We can use any information criterion we want to compute a set of weights, but, of course, we cannot mix them. \n",
+ "\n",
+ "This formula is a heuristic way to compute the relative probability of each model (given a fixed set of models) from the information criteria values. Look how the denominator is just a normalization term to ensure that the weights sum up to one.\n",
+ "\n",
+ "Once we have computed the weights we can use them to get a weighted posterior predictive samples. PyMC3 offers functions to perform these steps in a simple way, so let see them in action using an example.\n",
+ "\n",
+ "The following example is taken from the superb book [Statistical Rethinking](http://xcelab.net/rm/statistical-rethinking/) by Richard McElreath. You will find more PyMC3 examples from this book in this [repository](https://github.com/aloctavodia/Statistical-Rethinking-with-Python-and-PyMC3). We are going to explore a simplified version of it. Check the book for the whole example and a more thorough discussion of both, the biological motivation for this problem and a theoretical/practical discussion of using Information Criteria to compare, select and average models.\n",
+ "\n",
+ "Briefly, our problem is as follows: We want to explore the composition of milk across several primate species, it is hypothesized that females from species of primates with larger brains produce more _nutritious_ milk (loosely speaking this is done _in order to_ support the development of such big brains). This is an important question for evolutionary biologists and try to give and answer we will use 3 variables, two predictor variables: the proportion of neocortex compare to the total mass of the brain and the logarithm of the body mass of the mothers. And for predicted variable, the kilocalories per gram of milk. With these variables we are going to build 3 different linear models:\n",
+ " \n",
+ "1. A model using only the neocortex variable\n",
+ "2. A model using only the logarithm of the mass variable\n",
+ "3. A model using both variables\n",
+ "\n",
+ "Let start by uploading the data and centering the `neocortex` and `log mass` variables, for better sampling."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " kcal.per.g | \n",
+ " neocortex | \n",
+ " log_mass | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.49 | \n",
+ " -0.123706 | \n",
+ " -0.831353 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.47 | \n",
+ " -0.030706 | \n",
+ " 0.158647 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.56 | \n",
+ " -0.030706 | \n",
+ " 0.181647 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.89 | \n",
+ " 0.000294 | \n",
+ " -0.579353 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.92 | \n",
+ " 0.012294 | \n",
+ " -1.885353 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " kcal.per.g neocortex log_mass\n",
+ "0 0.49 -0.123706 -0.831353\n",
+ "1 0.47 -0.030706 0.158647\n",
+ "2 0.56 -0.030706 0.181647\n",
+ "3 0.89 0.000294 -0.579353\n",
+ "4 0.92 0.012294 -1.885353"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "d = pd.read_csv('../data/milk.csv')\n",
+ "d.iloc[:,1:] = d.iloc[:,1:] - d.iloc[:,1:].mean()\n",
+ "d.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now that we have the data we are going to build our first model using only the `neocortex`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Auto-assigning NUTS sampler...\n",
+ "Initializing NUTS using ADVI...\n",
+ "Average Loss = 12.469: 8%|▊ | 16237/200000 [00:02<00:27, 6644.09it/s]\n",
+ "Convergence archived at 16300\n",
+ "Interrupted at 16,300 [8%]: Average Loss = 28.436\n",
+ "100%|██████████| 2500/2500 [00:03<00:00, 809.12it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "with pm.Model() as model_0:\n",
+ " alpha = pm.Normal('alpha', mu=0, sd=10)\n",
+ " beta = pm.Normal('beta', mu=0, sd=10)\n",
+ " epsilon = pm.HalfNormal('epsilon', 10)\n",
+ " \n",
+ " mu = alpha + beta * d['neocortex']\n",
+ " \n",
+ " kcal = pm.Normal('kcal', mu=mu, sd=epsilon, observed=d['kcal.per.g'])\n",
+ " trace_0 = pm.sample(2000)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "For the first model I am going to check the posterior using the `traceplot` function, you can do the same for the other models."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAGoCAYAAABWjDTfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8VHXW/z93es1MGgkhBRIIIfSqKCwiIoKFIkpAlF13\nF2yPq1jX3WVdRERdxed59ieWda37KCosggWpShUVpIQakpCEkp5JMjPJ1Pv7I5nJzGTKncnczExy\n3q8XLzIzt5z7ve2c72kMy7IsCIIgCIIgCIIgCN4QRFoAgiAIgiAIgiCIng4ZXgRBEARBEARBEDxD\nhhdBEARBEARBEATPkOFFEARBEARBEATBM2R4EQRBEARBEARB8AwZXgRBEARBEARBEDxDhhdBRBFP\nP/003nnnHb/LbNy4EcuWLesmiQiCIAiiA3pPEUTokOFFEARBEARBEATBM6JIC0AQvRG73Y7Vq1fj\n2LFjMBgMYFkWq1atclsmPz8fS5YswaFDh2A0GrF8+XLceOONAICamhosXboUV65cgVAoxCuvvIKc\nnBwcPXoUL7/8MsxmM2pqanDNNddg9erVkThEgiAIIoah9xRBhB8yvAgiAhw7dgzV1dVYv349BAIB\n3nrrLbz99tvQarXOZWw2GzQaDTZu3IgzZ85g8eLFGDduHACgoqICa9euRVZWFlatWoV33nkHq1ev\nxgcffICHH34YV111FQwGA6ZNm4bCwkIMGzYsUodKEARBxCD0niKI8EOGF0FEgNGjR0Oj0eCTTz5B\nRUUFDh06BKVS6fZCA4DFixcDAPLy8pCbm4uffvoJADBixAhkZWUBAIYMGYLt27cDANasWYM9e/bg\njTfeQElJCVpbW2E0GrvxyAiCIIieAL2nCCL8UI4XQUSA7777zpl4PG3aNCxcuNDrckKh0Pm33W53\nfhaJOuZMGIYBy7IAgLvuugvff/89srOz8eCDDyIlJcX5G0EQBEFwhd5TBBF+yPAiiAiwf/9+TJ06\nFYsWLcLw4cOxY8cO2Gy2Tstt2rQJAHDy5EmUlpZi/PjxPrfZ2NiIwsJCPP7447jxxhtRVVWF8vJy\n2O123o6DIAiC6JnQe4ogwg+FGhJEBCgoKMDjjz+OW2+9FUKhEOPGjcO2bduQnp7uttyRI0fw6aef\nwm63Y+3atdBoND63qdFosHTpUsydOxdarRbx8fEYM2YMysrKMHHiRL4PiSAIguhB0HuKIMIPw5J/\nlyCiksGDB+PgwYNISEiItCgEQRAE0Ql6TxFEcFCoIUEQBEEQBEEQBM+Qx4sgCIIgCIIgCIJnyONF\nEARBEARBEATBM2R4EQRBEARBEARB8ExMVTWsqWmOtAgEQRBEBElOVkdahICE412lUkmh15vCIE33\nQPLyC8nLH7EkK0Dy8k045PX3niKPF0EQBEFEGSKRMPBCUQTJyy8kL3/EkqwAycs3fMtLhhdBEARB\nEARBEATPkOFFEARBEARBEATBMzGV40UQRGzQYrHhRJUe5+oMsNmBBLkYV2dokKyURFo0giAIguj1\nnK7RI1Mjh1ISW6GAsQ4ZXgRBhI0Luha88WMFPj9ZhSaTze03AQNcm6nFM1OyMTYtLkISEgRBEETv\nRm+y4nSNAVeaTbg+OzHS4vQqyPAiCKLLNLVa8dK+Urx75DIEDHBLXjJuG9wHQ/ooIRMKcLnZhO3F\ndfjo2BXM/OAI7hnVF8/fMAhSEUU7E9GF3W7Hs88+i7Nnz0IikWDVqlXIyspy/r5582a8++67EAgE\nuP3227Fo0aIISksQBBEculYL6owWAIDVzkZYmt5HVBleFosFTz/9NC5dugSBQIDnnnsOOTk5kRaL\nIAg/fFtUiye+PYdqgxl3jeiLJyb1R6pa6rZMqlqKMWlxeHBCBl7efwHrfryIM7UGvDt3GIUfElHF\njh07YDabsX79ehw9ehRr1qzBunXrnL+/9NJL+PLLL6FQKHDzzTfj5ptvhkajCbscZqsdG09VYWSq\nGjkJirBvvyfQarXBaLEjQS6OtCgEETPsKql3/s2S3dXtRNV08/fffw+r1YpPPvkEDz74IF577bVI\ni0QQhA9aLDY8+e053L2hEAlyMb65ZwxemTm4k9Hlikoqwt+uH4i3Z+fjeKUec/7vKKoN5m6UmiD8\nc/jwYUyePBkAMGrUKBQWFrr9PnjwYDQ3N8NsNoNlWTAMw4scZpsdAFBUZ+Rl+z2B70ob8F1pfeAF\neyl1RjOqYqh/EkH0BqLK4zVgwADYbDbY7Xbo9XqIRFElHkEQ7ZypMWDZ5lM4XWPAAxMy8MyUAZAI\nuc/jzB7SB32UEiz87Dju+OQYNi4ciUQFeb6IyKPX66FSqZyfhUIhrFar8300aNAg3H777ZDL5Zg+\nfTri4jrnK6pU0i73gjHbWSgUUkhFAmi10e/xEgojIKdYBIVYFNJ+IyJvFwhF3q0XdACAgvR4PkTy\nSyyNbyzJCnRdXoWiY3JUIRHyfuyRHl+z1Q6jxQYtR8843/JGlWWjUChw6dIlzJw5Ew0NDXjjjTci\nLRJBEC6wLIsPjl7BX3aeh0oixCd3jsD12QkhbWtiphYf3j4cd31+Ar/eeBKfF4yknC8i4qhUKhgM\nBudnu93uNLrOnDmD7777Djt37oRCocATTzyBb775BjNnznTbhj4MXgapUgqj0YRWhoFO1+b1Mlps\n2FpUi8lZ8Z1CdK12O8obW5Ed330KzsZTVRiUoMDwVDW0WoVTzu7CaGwb51D2G6y8zSYrdK1WZGhk\nQe8rFEoajDBZ7RiS3DYJEMr4dmV8/HG6Ro8UldRviGckrodQCaesVrsdRXVG5CUpefOGd1Vex3UB\nAKxZyPt5ivS1sO18LfRmG+blp3BaPhzyJierff4WVVrOe++9h0mTJuHbb7/FF198gaeffhomE7nJ\nCSIa0LVa8NtNJ/HEt+dwdYYGu+8dF7LR5WBy/3j87815OHSxEY9+cxYsBZwTEWbMmDHYs2cPAODo\n0aPIzc11/qZWqyGTySCVSiEUCpGQkICmpiZe5XG9J2raw3Iv6Fo6LXe8Uo+jV5q7PbSsqD42lOuu\nsr24Dj9dauy2/R290ozTNYbAC3YRs83uDGvlyukaA4V4+uBktQGnawyoaGyNtCicYNHz37l6sy3w\nQt1IVHm84uLiIBa3zaBoNBpYrVbYbNE1YATRGzl0sRH3bz6FSr0ZK6Zm44EJGRCEaTZv9pA+OF9v\nxIt7L2B0XzV+Py49LNsliFCYPn069u/fj4KCArAsi9WrV2PLli0wGo1YsGABFixYgEWLFkEsFiMz\nMxNz587lRY5g5yBM1jbl+XKzCSkq33mWvQmzzQ4BA4gEUTXH3O1U6U1IUkggFHR+Zn95tgYAOHsD\nCP/Y2qsE2kK0Z3682AizzY5JWd0fHkp0D1FleP3617/GM888g0WLFsFiseDRRx+FQhE7cbcE0dNg\nWRbrfryI574rRoZGhq/uHo3RfcPfg2v5NVk4eqUZz+4qxti0OIyhPl9EhBAIBFi5cqXbd67VdRcu\nXIiFCxd2t1icKW1o4eUejUW+PFsDqVCAmwcnR1qUiLK/XIf+Wrnf5+qZGgMGJsp7vZEaaS42da+n\nLJJBJrpWC5RiIcRCAYrqDOirkkIljSqzhBei6giVSiX++7//O9JiEASBtt5cf/j6DL46V4tbBifh\nv2flQc3TQ5FhGPzPzXm44d2f8ftNJ7Hz3nHQyqhENEEAQK3RjD0XGjAosedMRDpCKPnKg3FgCjKM\nzhtWe9e3EWkChVudqtHDZLNjZKrv3BSCO7ESwhcpKe0si10l9UhWSHB1hgYnqvQoqjNiVm7PnySh\nqQ2CIDpxttaAG98/jK1Ftfjb9Tl4Z85Q3owuB/FyMd6aMxSVejMe/uoM5XsRvRpXxe1SU1veVk0P\nar1w+HIT/nO6OtJicKK3lPTn0kw3lp7LNjuLY5XNsITB+CbCi+MyqmuxOJ90Np6bOZ+u0aMkCnJS\nyfAiCMKNHyp0uOXDX9BstmLjwlG4f0IG77PSDsamxWHF1GxsLarDmz9d7JZ9EkQ04k+/7Z67MXRa\nLDbYAyjo5TFSfAAAXPXBWDI8XAnXNcPl6O0siytNrTh0sfuKkXjjgq4FxfVGnAmhSElTqzWkfXbT\nqzJsxOjlHBKnaww4WtkcaTHI8CIIooMtZ6pxxyfHkKwU45u7x2BiprbbZVg6Lh0zByXhue9KcPQK\nvxXjCKK30tBi6ZIRcfiy73vzm6Ja/MiT0n26Rt/tzwVXXTpWvHR8EeiSqTaYsel0Nb4vqcelbs5X\n8oWNw3XuOlFQbTBjR0kdShs6Vw/1pLLZ5CxswweVzSaUealiGj4ib3m1WHpXET0yvAiCAAC8c/gi\nfrfpFEakqvHl3WOQqZVHRA6GYfDarMHoo5Jg6Ren0GwKbeaRIHoa4Zqdbmq1YndpPQqr9CFvw5cy\n6DDmLjdzL2uvN1lR2tCCY5XNAT1lp2sMKOGgEEeC4nojGlstkRYjZMLhrImmcFhDe15boNumtt1Y\ndLRicHi7mjzePedqDagzdhyfxWbHgQodDlTowid0Oz+3ty44UKHzO8nhj8pmE4wBjBoLz+F9vnCE\nUttZFjtLArcmsNjsOFbZHHQ4YqDnSSQgw4sgCLzxYwX+uP08ZgxKxOcFI/02xuwO4uVivHFbPioa\nW/HEt+diNryHIELF2xXfGMQkhK7V4rOnlyPcpsElnKqy2YQqvQnluhZcDuCpCHevsG3FdfjlShOK\n6424EoTB5iDcz4eNp6pwuqbDKOUaPnasspmTEung6JUmrz3Zoplgi0a4nptt52u7tf/X+fZ8noBe\nOr0jh7LNaHZ4yIQeJ76wWo/vLzQ4PztsAL3Ji3ETwiW5s7jO+Xd5Y2uXc54OVOiwszjweEdicjPY\nW/ZsrRHF9UaUNASXoxXMfgqr9E5jnU/I8CKIXs67Ry5hxa5i3DI4Cf+aOxRysTDSIgEArkrX4IlJ\n/bHxVDU+OVEZaXEIImJwMSxcl7Da7dhVUo/95TpY7XYcvtzkFg5V2z5r7zobfKBCh/3lOvx8uQk/\nXGzEvrIGn4no58NYbMLT6xYtcyyuzYsZP76gPRcaQjaeShpacCREb4YDlmWh70bFOdD58Rwp18X1\nZhvqW7rfI+hNZEfhDW/Nox0GjzAEDbkrXkPPiZVwVEa0cKjI2cpjqGQw+DvaDg9ZcNvk6vFqbLXg\nXJ2hW/ISyfAiiF7MzuI6/HF7EWYMTMSbt+VHXQ+XP0zMwqRMLf64vQjnaoNPkCaIWIdF8IrRL1c6\nEsjLdK0o07W4eXAc+PPkVBvMXhPR7SyLKj/hZMGqiufq3O/rWCtOUGs0d9l46gpna43YVlyHplYr\n9l5owO4ueJRcx77GYEartfPsf6Dz63n+wm1IHyjXYeOpqqDW8TZxUdbYVnjjdI2h0zE5DS8fF+Mv\nHjmGXK7ZplYrioOsqMd17FiWxZkaA/ZcaAhb6wOWZVFSb+St0mB3za/wZah1hejSsgiC6DaK6gxY\nuvkUhiQr8cZt+RCHMr3HM0IBg9dvHQK5SIilX5zyqggQRE/EVVkMJl8KgNe8Dm+VSR27CKbcdkk9\nv6FxRosNJ6qancd/QdcSsAR0qKpSld7EKbTIc+g2nqriVHjBdT9cn116k9WtCl8gb6fDe9litaHG\naEZDmDxKe8sasPdC13OX/CmyxyubA4a1elIZQpirVwnav3SVz3GeHXdDjcGMX640dToHwZz74noj\nLDY7jlc141hlc1ChbFyv67oWC07V6FFrNKNaH54cu8vNJhytbMap6tDzQMOJP6+zP7h4DUvqjUGF\nCHeV6NO0CILgnYYWCxZ/XgipUIAPbx8OpSQ6wgu9kaqW4n9vycOpGgOe3VUcaXGIGEOv1+PMmTMw\nGiPfvyXctFhsqAwhJ8qTLWdrOC/rrdeT66x4V/NFHI1UHWFXRy43efW8Bes9ANrkdDUy95frsMMl\nrwbgni/mzxj8+lzHeNpZFvvLddhfxs2I2VeuwykX72QoRiXLsqgIoVx/aUMLtpypht7cNvbN5s7n\nMnCoobuCbPBT3OF8vRE/tId2NZus2HiqKuQy7v4I1WlTZTCjtKEFOh8yOZR6s82O3aX1bsY1izaD\n+1hlM45X6dHcngfmyxD1Nvnha6zLGlrc7jM+vFKOyZ5wNCD3hrdji1SY8bFuLjFPhhdB9DIsNjt+\nt+kkLjW14r15w5CukUVapIDckJOI+8an419HLuOrIJREonezdetWLF68GE888QTeffddvP7665EW\nKSw4vFd7yxo4V1RjWRb1LZaQQ2ku6FrQYrF5Vca/v9A2W1ylN4Vt5tibmK4hZqEoS7tL6zsZmVxK\njXuba++Uj+OyHdfQUMfXeo6eDl/eR6vN7vXceRO/qM6Iny6FlqtisbMo0/k22gJ5EDy9g7s4Xg+O\nJuEVTV0vKuGJV2Oacf3d//pcrpGGFguaTDbYXBZ1HIeZQ6jwtvN1nb5zPd+uOZoHyxqw3WXCwHW8\nbGyHF9RzW4HKtpusdnx5tga6VovTcOdyJowWGzaeqgqq6E6o+Wv+ToWdZZ3FeWoMZs6TUt3Vp9QB\nGV4E0ctYsbMYe8t0+PuMXExI10RaHM78+bpsjExV4ZGvz+JiDDVfJSLHe++9h08//RRarRYPPPAA\nduzYEWmROMNlotmhzHPx0jSZbPiutN7NYOGq+phtdhy53IT95TqvnhSdj/LbXSEYtczz8Bt8GJhc\n5PO233DoZSzaEvj3XmjwW+Lb5iGA4zA+P1Hpt0KdazhqV4slOIw/x2GbbXanzHx5JRxjfLbWgC/O\nVGMTD/3SLjW1YuOpKtQZzag3toVkuh6Pr9PcauE2nizLOtssOAzJzst0/k5vtnr1LLku6jBqXD1d\ntUYzmk1Wp9cQaMs/23OhwS2ksaTBiMIqPb4pqvVaTMRBtcEMs83uEerqc3Ende1jecGPwc4nJqsd\n31+ox54LDThYocOPFxudk1Jc5O/utFIyvAiiF/H+L5fxzpFLuH9COgpG9I20OEEhEQrw5ux82FgW\n9205FbYkYqLnIhQKIZFIwDAMGIaBXB6Z3nShcPhSeHoDORQPh9ERTH6K5za6s/pZMCXiK5pasel0\nNWz2tgp/u0vrcSJAj7KTVdw9ZoG2BXg32JpNVnxxpsOAKGloQY3R7DdPydNgdPUMePM2OgjlvPrC\n0SfN4Qn45lwtthbVAnAPHbTZWRgtNhTXG525Zd6UWJudDVgtTuCxYjCe2YPlOpyrNeBiY6vX5tqO\n69YxRt9faEB5EJN3P3L0HppdrGZPr5PreWyx2HC8siOP0Zu3C2jrL+bAsekil4qiNQYzvittcFvH\nEQrs+n48eqXZWVrfn9HvrQcfl7Pg2KfY8yT6wdfp1Zusbvd+ld6EymaT18mPisZWnK7R46tzNagz\nWpwVMy+65A0Gc579yRVOyPAiiF7C/rIG/HF7EaZlJ2DFdTmRFicksuMV+PtNufjxYhP+vq8s0uIQ\nUc7YsWOxfPlyVFVVYcWKFRg+fHikReJMrYF7kQQ76150wJvy4G2mm2WDM3C85Xc5KAxznkQw+s/J\nKn1bKJXV5vQc+Ctbrmu14MQV7/KGqnh5GxtXr4edZd0KX3AtWuBPHoO5raAGF2qM5qDLzjv0aEeo\nXavVhj0ufay+OFONrUW1OFbZ7Kym6M04v9jUiksuynCdF5l9FU+w2Ow4HqBx7hW9CYXVevx4qdFp\nNLpe744wPV/NncMV9uZp/Na3eMmRA4tf2g2hGqP/e9y1z57P3DAfE5C+xtPfPeztFy7PB0eVR6GA\nQZXeBJZlYbJ6D431ty8by2JbcR0KXe6N/eVtDarPtlc1dj1XP11qdGv74I2THO6z7q6kKure3REE\nEQku6Frw200nMSBejjdvy4cwiJmpaGNefgq+L23A2gNluDZTi8n94yMtEhGlLF++HHv27EF+fj5y\ncnIwderUSIvEC/48UYGUyjIOM8KO8EJ/itTZGj0yFeFTKYIxgByK0/bzddDIAjd/b/bW8DYEXJVS\nz5LyZpvdrUgGALciDWc82mOcrzN6zSXyNwzfnq8NQtq2Xm03DkzivLznW4JLRb7zHIqefH+hAfPy\nU9z35eOVdLrGgPP1RqgkQmQnKAJu28GXXnKBvY3lBV0LWLHITQZvxoa37zzzDD29XL7uF8e2DpTr\nkOknx9rV2DxdY0BOEMfvC3/pc6GYn64GbrmuFcX1RoxJi8ORy03oo5RgUpb397O/Sqq+DGS+oFBD\ngiDCSrPJins+PwE7C3w4fxjiZLE/37J6+iDkJMhx/5bT3f6QJmKHTZs2ob6+HklJSWhsbMSmTZsC\nrmO327FixQosWLAAd999N8rKOjyrNTU1uPvuu53/xo0bh48//jjscgcKs/LMwekKgRLQy3UtOM4h\nLC/cITqem3MU8PCGoF1jZtHmzfImD9fGvcF4P664jJ1nyf+qIMt6H69q5jQ7z4VwhR16Fh3gqwiB\nxWb3aXiFo69SoFodjneII1eJa/uGYNo8OA6DBZwTn3aW9dt82/XYzTZ7p5YE/rw9vgqC7Ctr6PTd\n3rIGn30yg5mkcHjfHONZbTB36rnGsiyqDWa/RXh0rdagCnUEyw8VOo8m8D2ouEZNDVUfI4hIYrOz\nuH/zaRTVGfHPOUORHd/1GbNoQCkR4q3ZQ9HYasHDX53plqaHROxRXFyM4uJinD9/Hlu2bMHevXsD\nrrNjxw6YzWasX78ejz32GNasWeP8LTk5GR9++CE+/PBDLF++HPn5+bjzzjvDLre/cCAg+L5e/gh0\n6/zMsTkwi9B77XhDb7K6KYN1fsKyAjnwf7rUiO+60FjYF95CyVz36ROPMT/jR4H2rIZ4nENIZ6Aq\nfAazzVky3h+ewxpKCX8u7CqpD/raCS5E1s6pUmK1wQxdq8WrBzmksv4+vudqwPoqtMKFYBtpF1br\nUe6lOIa3EGWTta3Yyk+XGr16QX0Vv7LZWfzndDV+DJDvB7SFGHrjdI0hqL6D3rjcbHKbTHI9HaGG\nnQYDr1PfDz/8MBISEjB//nxMmTIFAkFgO+/NN9/Erl27YLFYsHDhQtxxxx18ikgQPZrnvivBtuI6\nvDB9EH7Vw0LyhqWo8Oz1A/HH7UX4f4cq8F9XZ0ZaJCLKeOyxx5x/syyLZcuWBVzn8OHDmDx5MgBg\n1KhRKCws7LQMy7J47rnn8Pe//x1CYfh74HFREl0VZ3/Kgn9ljY3aSQtvvbt8EUhpD9TTauOpKkwd\nkIB4udhtvFosNoj8WHVcjBcueIYkuvJdaT1uHZzs/Hy+3ogRqeqQ9qM32/D9hXqnEesZ7ueJWOh+\n7KH0BgP8G82A/15fvirltRn63vHMn7PYWbciJ/7gWv6eCw6P6BUP7w1XE9ObcXlB1wKFQtpV0bzi\nrQw9wwBHrzRhYIICKmmbyfCVS586b33XfOWKOYxBf5UVXfH1bPrxYiMmZmo5bSMa4dXw+vjjj3H+\n/Hls2LAB69atw8SJEzF//nxkZGR4Xf7QoUP45Zdf8PHHH6OlpQX/+te/+BSPIHo07xy+iNd/rMC9\nY9Jw75i0SIvDC/eOScOBch1Wf1+C8f3icHVG7D6MifBjNncoEjU1Nbh48WLAdfR6PVQqlfOzUCiE\n1WqFSNTxuty1axcGDRqE7Oxsr9tQqaQQiUI3yEQmKwRX9H4VrENVBiiUUrAsoNEooFB0KJsqpRit\nTNtEp0otg0LvXfFVysWQigRQsF33VDEMA3WcDIrmjjHXan172MOpPKpkItha3cdbLBFC4WOyV62W\nQdBocpOh1spigFYBi83u/P77S81QSYQ+ZVWrZVCEkC6mjpND0cQ9FLHSYodAwDjlcIxrKGPY4rKe\nVqvwuw21TIRWoe/j90QolziXdZW32mzvtI0d5Y1u3ylV0k7LaDRyyOQSAEBcnNxNXo1G4QzZ81yv\n3GgNamxcZfVF2z3WsUygsXOgELur2T9Utnk3uawrV0jdrq9zTWYoFFJO8oaTSpMdLQ2tmJnXB4C7\n7HKZCJYAk09CoQBylQxWoRAKBffnYrWF9XqczSywrayxy2OgswM/lOsglUsgap/ssrfL6+/Z1VV4\nT/ZISUlBRkYGTp48iXPnzuH555/HwIED8fjjj3dadt++fcjNzcWDDz4IvV6PJ598km/xCKJH8tXZ\nGjyz/TxuGpSI528Y1O0NArsLhmGwduZgFFbrsfSLU9h17zgkKSSRFouIEm666SYwDAOWZSGTyfDb\n3/424DoqlQoGQ0fol91udzO6AGDz5s245557fG5D38X8BL3JCrudhdHIbTunKxrcltWzdhjbc5qa\nm8U+tyOx22AWCGDkWBnPHwqFFMVXmtz2df6yDjUGM4Ykq/DNuVpkamXQm21QioWcj40LphZzp/A6\no5+ouKamlk7j2ywRQKczwmixuX3vdzsChHQcdQ3GoNarbRC4yXv+sg4iAdPlMdTp/Mshstnw9YnL\nnLfX4HJcCoU0KPnOe1w7AFBbb3B+19TcgkKDyfm5vsEAsVCAxlZLl8eBi6x7zla5LRNo7MJBI1i3\ne7M4xLENBwKrFTpde0l6131brH5L1AOAzWZHWVXn8xuIOp7HeF9RjVfvm81mdx5rqCQn+/ZK82p4\n/eEPf0BRURFuu+02vPzyy0hJaXNrz5s3z+vyDQ0NuHz5Mt544w1cvHgR999/P7Zu3dpjlUaC4IOf\nLjXi/i2nMSZNjTdivIIhF+JkIvxzTj5mfXAED2w5jY/vGNHjj5ngxq5du4JeZ8yYMdi9ezdmzZqF\no0ePIjc3t9MyhYWFGDNmTDhE9EqwwX8lIRZTYNnQcld84dmfylF6PFkpQYvV5iwJHW4C5TRxwbEF\nR78qLoQapukvtNAbnjl/9UaLW8ltvkhUiMPaFDtYXI/bZLWjweIaXttGsEVMQsWzYElRHT/XsivR\nFAbc4qOJNJewaJZlfeZs+YPv4w+US8sXvBped955J0aNGgWlUonq6o74Wl9VoLRaLbKzsyGRSJCd\nnQ2pVIr6+nokJibyKSZB9BgKq/S4+/MT6KuW4sP5w6EQhz//JBoZnqLG6umD8NjWc3jtYBkeu7Z/\npEUiIsiQVvmBAAAgAElEQVSCBQt8Tth98sknftedPn069u/fj4KCArAsi9WrV2PLli0wGo1YsGAB\n6uvroVKpeJ0QDFbf8Ld8oG11RzJ5o5c8kJ5Ad+ltXJTbUHBUgAwXvnpKccFbU2nPcupZWrnbbxbY\nnT26uhsuTbW7CtdKnN2Br8kNE4d8rVDtp6I6foq5BKIxzPeFJ7waXkeOHMGhQ4ewfPlyrFq1CsOG\nDcPSpUshlXqPyxw7diw++OAD/OY3v0F1dTVaWlqg1VLOBkFw4cjlJixYfxxKiRAf3zm814XcLR7Z\nFwcqdHh53wVM6Keh/l69mFdffTXkdQUCAVauXOn2XU5OR8PxhIQEfPHFFyFvnwvBGkOey7sqbP62\n1dhN3gzPfkfRSkuAkClP7N1gtAIOAyT8hn6gQhIWz7J6ATjMsQImV3aXupc+L3cpvV7e2IqztYaI\neS16I1a7PaTJBn99BiOJL49aU6sVoZWv4QbDBlOTM0jmzZuHjRs3Oj8XFBQEnG186aWXcOjQIbAs\ni0cffdRZXQoAampi4+FNEN3NDxU6LPrsBBIVYmwoGIlMl5nB3oTebMWM949A12rBrt+MQ4qq+xKQ\nie7BX+y8J2VlZdi6dSssljZDpLq6upNRxQddfVfpWi34odLAOb9BKhRwmnnmk0jknYTKuLQ4nNKZ\nuiyvRirqFuNVKhRAKO3I1RueouoWj0tXiKXrIZZkBWJPXqVSCoMhduSdNTwNMlvXmqxHLMeLYRiY\nzWZIJBJYLBZOfReooAZBBMeuknr8ZmMh0jUyfF4wEn3VvdfYUElEeGfOUMx4/zCWfXEKny8cCRGH\nNhZEz+Sxxx7D9OnTceTIEfTp0wdGf5USooigQw35EaPHcqxSD7FM3OXtdJfH0GSzo2d0YCR6I1GU\nqhYV8KqRFBQU4NZbb8V//dd/Yc6cOSgoKOBzdwTRq2BZFm/+VIFFnx1HdoIcmxaN6tVGl4O8ZCVe\nnJGLAxWNeHnfhUiLQ0QQhUKBZcuWISUlBWvWrEFtLffCCZEkWD2Fa18coo2u5CJFA9Hu7SKIWIbv\n0ly8erzuuOMOTJs2DRUVFcjIyEBCQgKfuyOIXoPJaseT357DxycqMSs3Cf+4JQ8qCe/dIWKGguGp\nOFShw9oD5RiXpsH0gVSgpzfCMAxqampgMBhgNBpjyONFU8QEQRCRgO9C6rxqaqdPn8b69ethMnXE\ndr7wwgt87pIgejxVehN+85+T+PlSEx6/NguPT+oPAbVc6MTq6YNwvEqP+7ecwrYlY5GdQME6vY2H\nHnoI27dvx+zZs3HDDTdg9uzZkRaJE2R2EYRvhAwTlhYCBOGNmPZ4Pf3001i8eDFSU1P53A1B9BqO\nVTZjyYZC6FoteGdOPm5t7yRPdEYuFuLduUNx4/uHsWRjIb65ewxUUvIK9iYaGxtRUFAAgUCAadOm\nRVoczpBOGd2IBYKYD1eMZUQCBrYgKy4SRLTAa45XUlIS7rjjDkyePNn5jyCI0Nhyphq3ffQLBAyw\nZfFoMro4kKmV4+3ZQ3G+zoiHvjoTVQ0pCf45ePAgZs+ejbVr16KioiLS4nCGrtLoRikRYGxaXKTF\niGoSFF0vXuILoYAiPAj+4LNHI8Cz4dWvXz+89dZb2Lt3L/bt24d9+/bxuTuC6JGwLItX91/Abzed\nwrAUFb5dMhbDU/jsMtGzmNw/Hn+dmoOvz9XitQNlkRaH6Eb+8pe/YMOGDcjLy8PKlSvx61//OtIi\ncaKn5HjNGdJTJ4cYyHtJc/pQGdJHxdu2JUIyvIjYhde4G4vFgtLSUpSWljq/mzRpEp+7JIgeRavV\nhke+PouNp6oxf2gKXp2ZC5mIXvjBsmx8Oo5X6fHi3gsYnqKmYhu9iOPHj2Pfvn2oq6vDjBkzIi1O\nr0LAMLgxJxHbiusiLUpYYRj3PBCVRIj8ZBV+vNQYMZl6E6P6xkElEeLLszWRFoXogcR0jtcLL7yA\n0tJSlJeXY/DgwejTp6fOfhFE+NGbrViyoRB7y3R45lcD8IeJmby7wHsqDMPglZtyca7WgPvai23k\nULGNHs+sWbOQl5eHO+64A88//3ykxemV9MS8SgaAI9pNLRFh+sBEXG5qjahMvQmtTBSzYeNUGITg\n9Yn40UcfYfv27WhsbMTcuXNRVlaGFStW8LlLgugRNLVasfCz4zh8uQn/uCUPdw6jAjVdRS4W4r15\nwzD9vcO4+/MT+OaeMdCEoYkqEb38+9//Rnx8fKTFCBp7D9bLVBIh9GZbpMXwCgNu+XUMA2clWbZ9\nDZGQGrV3FwwAhne/RHi5Ol2DHy42tpUq78H3tydSui86weuIfPXVV3j33XehVquxZMkSHDt2jM/d\nEUSPoL7Fgts/OYpfrjTj7dn5ZHSFkXSNDP+aOxRlulYs/eIUrFSZrEcTi0ZXTycYhVkm6h6lTSVp\nC98WcSzawICB0GF4tSvRfZQSt2VmDkoKn4AxCNexDAWGYRAL9TUc1xXQYWvFmsEYCGWAXMdf9ff+\nDJZHQcrEhH6aiOyX16cay7JgGMYZHiWRSAKsQRC9m8ZWC+b931GcqTHg/XnDqHIhD0zM1OKlGbnY\nXdqAv+0qibQ4BNEJPpXWYMhJUCBFGd73NhvEdH939ScckaLGtZlaKDk2oWcASERtspl9lDXv7cU3\n+sbJwro9hcd48hV272lA+yIuxBDanpYtcE2m1u/vvg53Zm7niYl+cbKQxzUUZOLIeON43estt9yC\nu+66C+Xl5fj973+PG264gc/dEURM02q14Z4NhSiqM+KD+cOpAASP3DWyL5aNS8ebP1/ER8cuR1oc\ngkcOHjyI9evX48yZMzCZTJEWhxPJYTZ2QkXIMEEpQlw8VFzDDMekxfHm1fA06MRCBikqKef1GQaQ\ntIdQJYW5bHqil+1lx8vDuo9QiaTN4OtaUHM0lrnC5Rjj5WLckMPt/XxDdiKudTFOYtXuEvs4Aeow\nGkoKkQDXDYjHNRlan/sLJ5E6F7yalosXL8bEiRNx7tw5DBgwAHl5eXzujiBiFpudxf2bT+NgRSPe\nvG0Ipg5IiLRIPZ6/Xp+Nc3UGPPVtEXLiFZgYYOaOiD1effVVVFZWori4GBKJBG+99RZeffXVSIsV\nMzAM92bOBaPS8NnPFWiF//BdAcNwKozQXyvHkctNzs+JCjHqjBZuwnghP1mFUzV6AIBnNXKH90Qh\nFkDHoUZGW3ENBtNzEiEP86x5olzS6TgT5GJUBjFpMDBBgUtNJrRYw5tLxzBMxFodePN+Th2QAGUE\nqhv6G4O+Kimu6NvOFQMGcTIR4iDCxca2C6unebwC4uV4r0r3HeInEgiQquY2CaKViaBrtQIAUpQS\nVBnMnNaTi4TOeyM9ToaL3VwYh1eP1z/+8Q988803KC4uxo4dO/CPf/yDz90RREzCsiye3l6Er87V\nYtW0gZibnxJpkXoFIoEAb83OR5ZWhnv/cxJlupZIi0SEmcOHD+Oll16CQqHA3LlzcfHixYDr2O12\nrFixAgsWLMDdd9+NsjL33m/Hjx/HokWLsHDhQjz88MMx40ULlTgZ9/lZLkqlYxFJEEn3gxIVmNI/\n9Mmom3OTESd1DVVzF9TxaWxaHKfcE4ehppaKIBJ0Po5w69bBhtVpZKKI5EBdnx36OZoX4L3n7XDi\n5WLO19EN2dw8VFzG2p/tOTRA/7LuCp91JT9ZhTFpcbjaj8ETmPDJ3Y9DGCoX8z5R0RYZMCRZCR8R\nv15xDTEc3y8Os7s5pYNXwyspKQlJSUlITExEVVUVrly5wufuCCIm+cehCrz/y2U8dFUGlo5Pj7Q4\nvQqNTIyP5g+HjWVxz4ZC6E3WSItEhBGbzQaTyQSGYWCz2SDwoiR7smPHDpjNZqxfvx6PPfYY1qxZ\n4/yNZVn85S9/wQsvvICPP/4YkydPxqVLl/g8BF7I0nILXWPal70+OwFj0+IwIsTG7a7rOfROf+GU\nnuF2pQ2BJ0XGpsX5/I1h3KsOeholjs9ioQCZ2g6l0FfhgEAqqC8dMJR8OaVYGHTOX7iVe8bjf19o\neawSKwhiDEb3db8WJmXFc55A4LIXx/n15rlxVeqHpXQ2whzb704DLD1Oiv5aOdLCnHfH5Tnir5hI\nhsZdHq62U5JCgslZ8c4tiwUCDElWcly74xywaDO0hd08S8Gr4VVQUICCggIsXLgQzz33HKqqqgKu\nU1dXhylTpqC4uJhP0QgiKthVUodV35Vgdl4y/nJddqTF6ZVkJyjw9px8nKs14P4tp2HrybW8exlL\nlizBvHnzUFRUhDvuuAOLFi0KuM7hw4cxefJkAMCoUaNQWFjo/K20tBRarRbvvfceFi9eDJ1Oh+zs\nyN+3tw5O5mW7DgNIKxMjSyvHwESF35wvLuqLpxKv9VCI09TSTt4tLtFt/vbNwL1ogqfO66ocpqok\nkIkEuG5Agk9FcLgXhdobA+LlzmXH99P4DWce3TcO2fFyt+IjSQoJZoRQHZFB8CFtvqrPAR3eSc8C\nF8HgyNnJS/KtIOcm+v4tmDy3AfFyN08Yl4IZAwJsP17eYVQ6QmVdPTdXp2swLz/Fbb99vYTMOc5L\nVyt2pnEMxwO4F5Hw54lytU0S5GLcMjgZY/oGnogJt305OSsev+of32niJpi8WG8ydeXaDhZec7xK\nS0udf9fU1ODyZf9J7BaLBStWrIBMFl6rnCCikZIGI5Z9cRpDkpV4bVYeNUeOIFP6J2DVDYPwx+1F\neGFPKf5MRnCPYObMmbjmmmtQVlaG9PR0JCQEDoXS6/VQqToUa6FQCKvVCpFIhIaGBvzyyy9YsWIF\nMjMzcd9992HYsGGYOHGi2zZUKilEXSyXLBA0QqFwV67UUiGaTZ3zdpITVVAoOvKhRqbFQddiQZkP\nT5FaJYPCHLiVwuD0zsq4UqmHVdj52IRCAZQqKSwuv2m1bU3K4yx2KJrb8i8kQgZmGwtNnAz1Vha5\nqWoUVjY711GpZM71HMcvFDDQahWdxsOVuDg5FDrvYZ9arQJioQBJGgWMFhuUEiFarHbn9uLjFc4i\nAVqtAjlpbQbSyYZWwKUYyK+yE5CoEEPq49y6yqfVKjC1/TjG5yR7XcaV0QPaQuGOXm6CoqVtnwql\nGFqtAs1gIGho9Xv87scrh6rFCnsrdw9+XJwcCoXR62/X5STCzrI4U62HTW/GlOwEJCkl2HCi0mO/\nHedIKBS4yVswKs35d7mxQxeckKFFUa0BWq0Ck7QKiMoacMHjunWse7r9/DquDwee46LVKqBUSiGy\n2t2W9zV+t4/oi8qmVlSZ7FCrZWj0cmvcPCwV1QYT9pU2YHhanHObNw5NhUIsRIKiQ/F37MdVzkaW\ngaKhFSqZCPZWK5QSodu15cnYdA0OX2z0+ptAwECtlkJhA6QiAUxW//dyvFbp9Or4u4b6JanQYPU+\n3RAnE6Gp/XpSKcXok9jxjPS3Ta1GAcEVfad7AwDimkxQWDr2p1a73/tWL5Og6X3Uzoqh6TbgcqsN\nfZNU0GpkuGZgMo665IX6Qq2SoAUCxMXJoW0vqtMvUYVL7bleQqEAWqXC3ya6BK+Gl2uzZKlUiqee\nesrv8i+++CIKCgrw1ltv8SkWQUQcvdmKX28oBMMA790+rO0hTESUe8ek4UytAf/zQzkGJylwB/VP\ni1mWL1/ucyLjlVde8buuSqWCwWBwfrbb7RCJHEq5FllZWcjJyQEATJ48GYWFhZ0ML72+63lfdjsL\no9F9O0KrCEZzZ2VapzM6l9XKROgrEeBSTWun9R00SwTO327ITsSOkjqvy+l0nRVxg8EEo5eQXJvN\nDqHV5txumlrqXL+5uUMWq1AAs80OQ7sMTU0iNzn1wo79Or4XCRi3YwTaynk3ucjR1NTi83gbG40Q\nCQQwGNoKTjAWIVhxx35tLWboWjon5uv17gUqFHY7WvQm+Ap8dN2/t7HzXMYV51i5HEeT3Q6dzojG\nxlav14MnjmID+qZWGF3OU6ZGhvJG/wUEdI2+x89kaIVGJoZeb4LRaIa+uRVyu73T8q7nyGaz+xwP\n1+8ThMBVKUrn73LW+3Zd1/Mc2xSpwC0cVaczwmAwwWyzuy2fr5WisdWKonqPc8OyzutHLwT6yoQo\n9ljGqG+FCsBN/bVu21QBgNkKnct96U3Opqa2e0Bks7WdF4sQgxIVqDVanAq/K8kiBlPT4/DVuc6F\nQxQKKRoaW2A0msGIhTBa3A24azK0OFChc35ubDQ6Qxv9XUP6ZrHb70qxEIb2badKBahs/62Ztbsd\nW26cBAqx0LnPmYOS8E1RrXPfnteut+dC22chdLo2z6LYbkOTl2I6jY1GmNonPhKEwKS+Kijb5bG3\nmmE0miAVCjAzNwkXG1uha7XivMe51IOF0WiGrrEFkvb722Bodbt2fd2/XElO9u0N5NXw+vDDDzkv\nu3HjRiQkJGDy5MlkeBE9GpZl8YevzuJcnRGf3DkC/TnmWxD8wjAMVt8wEOfrjFj+zVkMiJdjXIQa\nLBJdo6CgwO1zMNXYxowZg927d2PWrFk4evQocnNznb9lZGTAYDCgrKwMWVlZ+PnnnzF//vywyh4u\nPI/WV9Uv19yX6TmJ2F7s3Qhz4C8fYkzfOPTXyjmF/bhuRiRgnLPbXPsoTczQ4tvztW7fjUhR41SN\nvtNMuSOU0BHGJxYKwK3+Gb9wrfDIZZl+cTIY2j0ornMOk7PikaQQ+zS8RqWqES8Xw+ZlH6kqKSr1\nJkjbw+KG9lHi8GUb4uX8qY5ZWjkOt3sttDIxMjWBI6BG941DQ4sVulb/VS8z29+1noaXkGHcwlnz\nkpSdDK+uImkvpakUC9FksoJBW5+8nARg4ynv58Zz7kjIMM7zpJaKUG0wQyXpMI58rcc1lsZzvdwk\nJU7X6NFqtUMhFmLukD44WtmMQYnu3qDshLbPg5OUSFKI3XrYMQwwd1gKGhtbOlWf9BflMzFDi8vN\nJrfKpt5QuYQ+S9qv00ytDAKGQaZWjqYqfefjbP/f2zuhzXspRmMjf/nevBpet912GwwGA6RSqbPy\nk6Op8s6dO92W3bBhAxiGwcGDB3H69Gk89dRTWLduHZKT+YldJ4hI8T8/lGPL2Rr8dWo2rqOy8VGF\nWCjAO3OHYsb7h7FkYyG2LRnLqQITEV1MmDABQFvO8Lp163DhwgUMGjQI9913X8B1p0+fjv3796Og\noAAsy2L16tXYsmULjEYjFixYgOeffx6PPfYYWJbF6NGjcd111/F6LL6U83n5Kdh4KnDetIORqWps\nC2BUufbk8VUB7ap0DbYW1Xr9TShgvBpdruI7/nbMwLNoq8JXZ7Tg6nSN1wIAjnWGJCtxuqbNG+lN\nZxuYqMDAREXAcRmTpsYPlQa/y7TJxm++p0TIoNUjtMs9H6ftt8BBoW3KpEORZJiOrDWxkPGp4E7P\nSXQ753lJSpyp7RiXiRkaWOysM28pUSHBjQM755zNGJgUVC7PhH4a/HjJexgd0NbDLVEuDqpHlNXu\nPkrBBO4LBIzzTDMMw0vJ9xSVFFela6CWiJzl5gPhKcbsIX2w6XQ1ACA/WYn0OCnipCJs8TBoPAt3\nuJ7/ESlqHK9qRiAcVSb1ZiuK6ozOQhSehUtc8VXRUSoSQiIUYGxanFt0j79hlggFSHLJq+MySZGk\nkODaTK3bM8jbufR3fof1UfGe9sGr4TV69GjMmTMHo0ePxtmzZ/HOO+9g1apVXpf997//7fz77rvv\nxrPPPktGF9Hj2Flch9Xfl2Jefh88MCEj0uIQXkiQi/Hh7cMx68MjuGdDIbYsHt2tibdE+HjkkUcw\na9YszJ8/H4cPH8aTTz6JN9980+86AoEAK1eudPvOEVoIABMnTsTnn3/Oi7zeuHVwMnaX1rfNkvvR\nBxzeCQcOZXl8Pw1UEqHbzDAXvBUGAEJLQvemMHXMOgPj0jQ4X2/0uU/H2kOSVR2Gl8cyXJR0hxjB\nlLIPN6NS1TjantOmlAjR6pGfMzBBgVarHUV1HR6XRLkY0JmcvchcPYQOGKZjnARMmxL846VGqPyE\nsXuOWX4fFdLipNhVUt++TcbpqfFHsKHy6RqZX8MrlCiQsWlxKK5vwbh+vg0Db3iWmfd2tLNygy9w\n4o1+cTLovYQKT8tOwM72MfeFowmzw1PMMB3l1D3Dbv0V6RuYqOhkePVVSSETC5AdL8fJ6s4eolDw\nZih5VkEc2kcFAQOUtIeJ+jOrOory+L8euTRC97YF14kgvuH16VNcXIzRo0cDAAYPHowrV65AIpFA\nIgm+pCpBxDolDUbct/k08vso8erMwVRMI4rJS1bizdvycaJKjz9uK4q0OEQXWLhwIfLy8nDXXXfB\naAxv+FB3IBQwGOOjVLpr+e48j3LKQ/soMSJFjfQ4qVtFNq6E8/nkrVAo41R0WCglQoxMVXfaZ057\nCJO3Sniui940KMnvMToUUUdFRqHLytNzfPd34qNXcHaCAuL2tgZjvXgPGIZxltl27F8tFaFgVBry\nkpWYlBXv1i/L9bhdvYmpailuy+vjtc+YP/goCT81TJEdfZQSt3PnSqJCggnpmqDLtDtCbf2FIsu6\nWCgnEBofY+56KA6DYkr/eAzpo3I7r55HHOwYiIVtnix/bQuCfRqMS4uDWCBwXuvekIoEGOXHgyZy\nMfpDrfjuGRYJdDx7XJ9Lju17C7kNN7x6vNRqNV577TWMGDECP//8M9LS0gKvhOBywwgiFtCb2opp\nCBjgvXnDyIMSA0wfmIhHr8nE2gPluDpDg4Uj+kZaJCJIsrOzsXnzZlx11VU4efIktFqts9rugAED\nIixd8HjqHv4a1ooEAgz0onR4Y0C8HNIQvUAqiRB6P9XZAHeP1/BUFY5eaYbYoVT50XNGpKiQn6yE\n2ItsrjPfns9T19n2BLnYqWhdlaGBrtXq5sXx5ykLVgUb30+Dn/x4chw49GKxUAC1RNSpx5Q/HdMz\nBy5VJYHJasfgRKXTi+RNSeUqGx+EYvh7Y1KW75L3vhiZyq33nOMcpKgkYW+A7YaPi6q/Vo4LusD9\n6jQyMbK0Cr/FH4I1Uhz3h7/JlmDvhXSNDOkc8vP84W7wMiFI4d27PTBRgUq9yS1X0enx6gaXF6+G\n1yuvvIL/+7//w969ezF48GAsX76cz90RRFTCsiz+66szOFdnxKcLRnJuXkpEnicnDcBPF5vw1LYi\njEhV+4xhJ6KTkpISlJSU4LPPPnN+t2LFCjAMgw8++CCCkgWHa4NfX3RFWfSXt+GPG3MSIRMLYLH5\n11ZcZ5b7a+Xor5XjfHsond/wIobpMNA6/eZ7vdvyklHZbMIPFxud/aOANiXM1XAJ1Esp2DHN0MiC\nNm6mD/TjceOwvlQowE3tvb78KdyhyBYKWpkoZCM+nDiuD2/9rrQycadCHFpZW28qiVAAi41LVl14\nydDIOhlegcLqnMv56UvHBbnHfeAvPLUn0EcpceawOXCMIdciTF2BV8NLKpVCo9HAYDBgwIABaGpq\n4tRHhSB6Eq8dLMdX52rxt+tz/DapJKIPoYDButuGYNq7h/Hb/5zE9l+PDSrhm4gsPSV6QisTY0SK\nGmlxUp+FLYIhRSlBGYfZ9UA48sYC9YLN0spQ0mD06qELVs1xzHszaMvPsXvZgoBhAs7iX52phdjq\n31M3OSsetS1mHL0SuBhBOAlWcXZdE/Ae2tldXJ/t25DsTuJlYlzRm7xW4bw+O8FrAZZI5v55I9Tw\numDXcw1TvjZTC40s+t5xfGdmCLyEH/K2Lz43vmLFCly+fBkHDhyAwWAI2MeLIHoa28/XYc2eUtw+\ntA/uG58eaXGIEEhRSfHW7Hxc0LXg0W/OdsuMGBEe1q5di0mTJrn9i1UGJir8emg6rkrfGsrovnG4\nPjvBbwhQoiJwWJg3L4I/1FIRbsvrA5WkQ6ELdYa5o/pcW3iYr5wkx3Z9KaH9ExQBi0LEyUTIjldg\nVKo6ItVNg33UCLpx1j7aGZ8eh+sGJESdMeWYCJAGmq1oX3ZUqtpZWMPPkl73wRXXnLAUlZT3nLau\nwFelUcfZ4LuSKcCzx6u8vBzPP/88fv75Z1x//fXUn4voVZTUG3H/llMY2keFV26iYhqxzDWZWjzz\nqwFY9X0prk6/hN+NIyM6Fvjuu++wa9euXlHQqaOUuO9lBsR3hDkPSVZ6Lf0+pX9CQMX9qnRNp6p6\nweKsahjy+v6fp+FUn7ITFPCTTtcJtaRrqlWor4o0tRT1LRa3PkqucGmk3FMQCQRIkIdmdLmOf0KY\n8tMcKCVCjEpV+6zg6YmjR5Y/xqapcbrGgMvNbVVNe6KqwfchDYiXo7yxtVsmWHidCrDZbKivrwfD\nMNDr9RAEWV2HIGIVvcmKJRsLIRIweG/eUCqm0QN46OpM3JiTiL/uKnY2+CSim/z8fGcPyZ6O0xPE\ncfkhySokKbwbpIEmidpyr7r4Pnd6Z0JcPcCBOrbb3RNeNw5MxHUDwhNSzmX23XWJ3CQlbs5N9vm+\nGZsWh1sGh69NjzyKPSPhQMgwvPTazE5QdDKOu3KZamRiXJ3R4RVz9fLmcDDcYgm+nLkqqQg3D/Z9\n74QTXj1ejz76KBYuXIiamhosWLAAf/rTn/jcHUFEBXaWxUNfncH59mIamVRMo0cgYBj87y15uOHd\nn/H7TSex8zfjwlati+CHQYMGYdKkSUhKSgLLsmAYBjt37oy0WLzQYWhEVg6uODxWoXu8/OOoatjd\nw6Hi4O0alKjAyWq9z/LdXZHZXwgb175cXJkxyH8+17WZWr8lygl+EDIMJvTTIFEh9un95Irj/HXH\nefTmaU9SSFBrNCNJKcGlplavOXtcGd9Pg8bWzn3UuhteDa8rV67g22+/RX19PeLj4ynUiugVvHag\nDF+fq8Vz03IwmYpp9Cji5WK8PWcobv3oFzz05Wl8OH940D1TiO7j66+/xs6dOxEXF1rVvmjD35XW\n4fGKjetR257An8Qhp8wbgfQJh6IYqHJhJBicpMRgL73JPOFtdl8idPYK6wqBnn3+mtl2pYVBdxGr\nj3sUY44AACAASURBVHaGQZdLuTvITVSCAeMWptydXJuphdlmh0QoQF6Soks5exkaGTI0YRQuRHi9\n6j/99FMAQEJCAhldRK9g2/lavLj3AuYPTcFSygPqkYxJi8PKaTnYXlyPfxyqiLQ4hB/S0tIgl8sh\nkUic/3oqbIQ8PKESLxdjVm4Sb+01+qqlGBWrLSB4Pok3DkzCkOTIjsvovnHIj9JzE+u1ScI5+SIU\nMMhLVvI6weivabdQwEAuFkIoYHw2mo41ePV4mc1mzJkzBwMGDHDmd73yyit87pIgIkZxvRH3bzmN\n4SkqvHJTLk029GDuHdMPP1Q04oXvSzA+LQ4TA1adIiJBZWUlpk+fjoyMDABtXpJPPvkkwlLxSyw9\ndkKpnpailKDKYA64HMMwnAoTRDOR0v/HpcV1OUSNCI5EuThsxU+4PgMSFWLUGS2BF+SZLK0MusrI\ny9Fd8GJ4vf7663jggQfw+OOPo6qqCikpKYFXIogYRtdqweLPT0AiEOC9ecPopdXDYRgGr84cjBNV\neizdfAo7fzPOrTErER2sXbs20iLwgrdwG2eOVzfL0t1cndEWetSTCcZjoeWh51JvyEsenKREoo8c\nXYd3R9mN73GGYTCunyY8hleA36/PToCIafMkRcO95BjvruRvxRK8GF4//PADHnjgAUyYMAH33HMP\nPvjgAz52QxBRgdVux9IvTqFc14oNC0eGLbaaiG7UUhHemTsUMz84gvs3n8KnC0b2mhdHrGC1WrF1\n61ZYLG2zqdXV1Vi5cmWEpQodhmEwqq/aq5HPuizTkxEKGMgFPXtiq6PHWeBlE31UpiT84y8EVShg\nMDFDi3h59DUS5kKgZ4BraF803Ev9tTKYrHYMTOz5Bj/AU46Xa2USauRH9HT+tqsE35U24KUZuW4l\nXYmez9A+Krx44yDsLdPhpX2lkRaH8OCxxx4DABw5cgQXL16ETqeLsETcmT00BbNykzp9nx2v8Fo5\nL9ZyvIjAdEczV8I7fdWRaSR8baYW03P8V4vsaTBMWx6ZqJe0nOLlKF2t7Z4++0b0bj46dhlv/nwR\ny8al466RfSMtDhEBFo7oi7tGpGLtgXJsOFkVaXEIFxQKBZYtW4aUlBSsWbMGtbW1kRaJM3KxMCjF\nr8PjxY88BEHwT4pKCrU0Nj1t0crV6RpM6BcF5Qzb4eXsnjx5EgUFBWBZFufPn3f+3RsSm4new8Fy\nHZ76tghTB8Tjr9dnR1ocIoK8OCMXJQ0teOTrM8jUyjA+ih7yvRmGYVBTUwODwQCj0Qij0RhwHbvd\njmeffRZnz56FRCLBqlWrkJWV5fz9vffew2effYaEhLbGqn/729+QnR35+5+CS3oOZDvHNskKCcRh\n7JdGdI20uOhK/+DF8Nq8eTMfmyWIqKFc14J7/3MSWVoZ3pqd32tc5IR3JEIB3p03DDe9fxhLNhTi\n2yVjw9Inh+gaDz30ELZv347Zs2fjhhtuwOzZswOus2PHDpjNZqxfvx5Hjx7FmjVrsG7dOufvhYWF\nePHFFzFs2DA+RQ+aPioJlGIhhiQH7g9FRDcykQDpcTIMTIztqoy9FerfSfiDF8OrX79+Qa9jsVjw\nzDPP4NKlSzCbzbj//vsxbdo0HqQjiK7hqGBotbP4aP7wHtNbgugaCXIx/n3HcMz84AgWf34CW+4a\njTgeKo4R3Bk/fjzGjx+PpqYmbNu2DSpV4L5Bhw8fxuTJkwEAo0aNQmFhodvvJ0+exFtvvYWamhpc\nd911WLZsGS+yB4tEKMCMQZ1zwojYg2EYTEgnrzlB9ESiRivYvHkztFotXn75Zeh0OsyZM4cMLyLq\naLXasGRDIYrrW/DJnSNivk8MEV4GJSrxztyhWPjpCSz+/AQ+WTACCmot0O2cPHkSf/rTn/DZZ59h\n9+7d+Otf/4q4uDg89dRTuP766/2uq9fr3Qw0oVAIq9UKkajtdXnzzTdj0aJFUKlUeOihh7B7925M\nnTrVbRsqlRSiLibmC4UCaLWx83whefnFU16FQgoAUXsMsTS+sSQr4FveaL0mesr4houoMbxuuukm\nzJgxA0BbdSahkJQVIrqw2Vk8sOU0DlY04s3bhlA4AeGVKf0TsO7WIVj6xSn8ZmMh3r99WESqY/Vm\nXnrpJaxZswZisRivvfYa/vnPfyIrKwu/+93vAhpeKpUKBoPB+dlutzuNLpZlsWTJEqjVagDAlClT\ncOrUqU6Gl15v6vIxaLUK6HSBc9KiBZKXXzzlNRrbrrFoPYZYGt9YkhXwLW+0XhM9ZXyDITlZ7fO3\nqElMUSqVUKlU0Ov1ePjhh/HII49EWiSCcMKyLP684zy+PFuLldfnYG4+NQUnfDN7SB+snTkY35U2\nYPHnhTCYbZEWqVdht9uRl5eHqqoqtLS0YOjQoVCpVBBwyMUcM2YM9uzZAwA4evQocnNznb/p9Xrc\ncsstMBgMYFkWhw4dirpcL4IgCCJ6iRqPFwBcuXIFDz74IBYtWoRbb7010uIQhJOX9l3AO0cu4YEJ\nGbhvQkakxSFigEUj+0IgYPDI12dwx/pjeH/eMCR7aXxLhB+Hh2rv3r2YOHEigLY8YldPli+mT5+O\n/fv3O6vxrl69Glu2bIHRaMSCBQvw6KOP4p577oFEIsHEiRMxZcoUXo+FIAiC6DlEjeFVW1uLe++9\nFytWrHC+KAkiGnh53wW8sr8Md41IxYqpkS8bTcQOBcNToRQL8dCXpzHj/cP4cP5wDO0TuMAD0TUm\nTpyIgoICVFZWYt26dSgvL8fKlSsxa9asgOsKBAKsXLnS7bucnBzn33PmzMGcOXPCLjNBEATR84ka\nw+uNN95AU1MTXn/9dbz++usAgLfffhsyGZVkJiLH3/ddwMv7LmDh8FS8MnMwBNSdlAiSW/OSkamV\n4e7PT+DmD49g3a35mJlL1ef4ZOnSpZg2bRpUKhVSUlJQXl6OBQsWYPr06ZEWjSAIgujFRI3h9ec/\n/xl//vOfIy0GQQBoy+n6+/4yvLzvAgqGp2LtLDK6iNAZmarGtiVjsWRjIX69sRDLxqfjmSkDqOgG\nj7h6qTIzM5GZmRlBaQiCIAgiioprEES0YLHZ8djWc3h53wUsGJaCteTpIsJAqlqKTYtGYcnoNLzx\n00Xc8O5hHL3SFGmxCIIgCILoJsjwIggXmlqtWPjZCXx07AqWX5OF/745D0IBGV1EeJCLhXhpRi7W\nLxiBZrMVMz84ghf2lKDFQlUPCYIgCKKnQ4YXQbRT0mDELR8dwYFyHf5n1mA8/asB5OkieGHqgATs\n+e143D40BWsPlGPyP3/Ct0W1kRaLIAiCiFES5OJIi0BwgAwvotfDsiw+Pn4F1//rZ1TqzVh/5wgU\njOgbabGIHo5GJsY/bhmC/ywcCblYgLs3FOLuz0+gpCF2Gk0SBEEQ0cGU/vGYO6RPpMUgAkCGF9Gr\naWix4LebTuIPX5/F6L5x2H3vOEzuHx9psYhexLVZ8dj1m3H469Rs7CvXYfLbP+Gvu86jsdUSadEI\ngiCIGIFhGDAUpRP1RE1VQ4LoTuwsi09PVGLV96VoaLHgL9dl44EJGZTPRUQEsVCAB6/KxPyhKViz\npxRv/HgR609U4olJA7BkdF+IBDRHRhAEQRCxDr3NiV7HT5cacdP7R/Dw12eRoZFh6z1j8F9XZ5LR\nRUScFJUUa2flYcdvxiI/WYU/bi/Cde/8jJ3FdZEWjSAIgiCILkIeL6LX8NOlRvzvwXJsPV+HVJUE\nr986BLfn9yHXPBF1DE9RY8PCkdhaVIdndxdj4WcnMHVAPP48JRvDU9WRFo8gCIIgiBAgw4vo0djs\nLHaW1OH/HarAwYpGxMtEeHJSf9w3IR0qCV3+RPTCMAxm5iZhWk4C3j1yCa/sL8O09w7j5twkPDm5\nP4YkqyItIkEQBEEQQUCaJ9EjKak34uMTlfi0sBJXms1IU0vx3LQcLB6ZBqVEGGnxCIIzEqEAy8Zn\nYOHwvnjjpwq88dNFfH2uFrcMTsbvx/XDVeka8toSBEEQRAxAhhfRI2BZFierDdhaVIutRbU4XqWH\ngAGmZSdg1bS+mDEoERIhpTQSsUucTIQnJw/A78el4/UfK/DekcvYcrYGw/qo8Lux/XBrXjLUUnqk\nEwRBEES0Qm9pIiZhWRalDS04WNGIA+U6HKjQ4VKTCQyAsf3isGJqNubnpyBVLY20qAQRVuLlYvxp\nSjYemZiFz09W4Z3DF/HIN2fxxLfncG2WFjcNSsK07ARkamTkCSMIgiCIKIIMLyLqMVntOFdrwMlq\nPQqr9ThZ3fa3rtUKAEhSiHF1hgaPXZuFGwcmoY9SEmGJCYJ/lBIhloxOwz2j+uLHS0345lwtvimq\nxdPbigAA8TIRhqeqMTxFhex4OfrFyZChkSJNLaNwW4IgCIKIAGR4EVEBy7KoMVpwvs6I8/VGFNUZ\nUdz+f0VjK+xs23IKsQBDklW4LS8ZI1LVmJihwcAEBc3sE70WhmFwVboGV6Vr8Nep2ThXZ8SBch0K\nq/Q4XtWMt3++CLONdVtHLRUiVSVFilKCFLUEKUopUlUSpKrbvkvXyNAvTgpBL7yv7HY7nn32WZw9\nexYSieT/s3fncU5V5//APzd7MpmZzA4M68CwiaxipSooSrHIquAMu19t1VaLCipqC6WKisWtLljp\nr9UWLYsKCqioLEoFRBbZZ1hmg1mYPfue3N8fmWSSTG72beB5v168mJkk9z65uUnOc885z8HKlSvR\nq1evDvdbtmwZ0tPT8cQTTyQgSkIIIZ0RJV4krkxWOypaDbjQonclWc4ES22yue4nFfBQkCnF8C6p\nmHlNHgZkp2BIrhx9MqS03hYhHBiGwYDsFAzITnH9zWq347LGjGq1EdVqE2rVRtRrzbisNeOy1oRD\n1WrUa00weSVnEgEPfTKk6JspRd9MGfpmSFGQKUNBphRZUuEVe7Fj586dMJvN2LhxI44dO4ZVq1bh\n3Xff9bjPhg0bcO7cOYwePTpBUZKr3fiCTBgt9kSHQQgJESVeJOosNjtqNCZcVBpRqTTgglvv1UW3\n3isA6JoqQr9MGe6+Jg/9MmXolyVDv0zZVXu1nZBoE/B46J4uQfd0Ced9WJaFymTFZY0jGbuoMqKs\nRY/yFgNKG3XYcb4ZVrc3bpqYjz4ZUvTJkKIgQ4ZeCgny5GLkyUXIk4uQIRF22gskR44cwc033wwA\nGD58OE6dOuVx+9GjR3H8+HEUFRWhvLw8ESESAoVECHC/pQkhSSqpEq9gh3iQxDFZ7WjUmdGgM6NR\nZ0aj3ozLGjMuqoy4qDTgosqIWo3JI7mSCHgoyJBiWJdU3DU4D4VZjgSrb4YUcqrCRkjCMQwDhUQI\nhUSIgTkpHW632u2OZKzZgPJWPSpaDahoNeBYnQbbShvh1VkGwDEHLVXEh1zEh4jPw+QBOXjipt6x\nfzIR0mq1kMvb10jj8/mwWq0QCARoaGjAO++8g7fffhtfffUV5zbkcjEEgsjm0fH5PCgUsoi2EU8U\nb2xRvLHTmWIFKN5Yi3W8SdXqDWaIR6T+V9mKY5c14DEAn2HA5zHgMQCPYcBjGPB5jr8zDAO+6++O\nhgkDwHERlwHDAAzQ9n/H31mwYFmABdr+9/zd8ZP77Y6rzv5+h/fvbZzxOZ+HM86OsTuuQFvtdljs\nLCw2FlY7C4vdDpudhdFqh9Zsg9Zkg8Zshcbtf5XRggad2WM4oLsuchF6KiS4oYcCPdMljn8Kx//d\n0yXUe0VIJybg8VCQIUNBhgxAlsdtzh7ueq0Z9VrH/0qjFWqTFRqTFVqzDRYbiyyZMDHBh0gul0On\n07l+t9vtEAgcX5U7duxAa2srHnjgATQ2NsJoNKKgoAB33XWXxza0WlPEcSgUMiiV+oi3Ey8Ub2xR\nvLHTmWIFKN5Yi0a8OTmpnLclVeIVaIhHNLzz0yXsLm+J+navFAwAuZiPVJEAqWI+5G3/56eJMU4m\nQq5chJwUIXKcP8tEyEkRQSygNbIIuRoJ+Tz0VkjRWyFNdChRMXLkSOzZsweTJk3CsWPH0L9/f9dt\nCxYswIIFCwAAmzdvRnl5eYekixBCCOGSVImXvyEegP8MMli7Hr4x4m0QQgi5Mk2YMAH79u1DcXEx\nWJbFiy++iG3btkGv16OoqCiobUTjuyqa24kXije2KN7Y6UyxAhRvrMUy3qRKvPwN8SCEEEJijcfj\n4bnnnvP4W9++fTvcj3q6CCGEhCqpxoeNHDkSe/fuBYAOQzwIIYQQQgghpLNiWJb1UY8qMZxVDc+d\nO+ca4uHrSiMhhBBCCCGEdCZJlXiFI9gS9MuWLUN6ejqeeOKJBETZuQQ6ph988AE+/vhjZGZmAgD+\n8pe/oKCgIFHhdhqBjuuJEyewatUqsCyLnJwcrF69GmKxOIERJz9/x7SxsRGLFy923bekpARLlizB\n7NmzExVupxHoXN26dSvef/998Hg83H333ZgzZ04Co72yJOuyKhaLBc8++yxqampgNpvxu9/9Dl27\ndsWDDz6I3r17AwBmz56NSZMmYdOmTdiwYQMEAgF+97vf4dZbb01IzDNmzHDNG+/evTseeughPP30\n02AYBoWFhfjzn/8MHo+XFPFu3rwZW7ZsAQCYTCaUlJRg48aNSXl8jx8/jldeeQXr1q1DVVVV0MfU\naDTiySefRHNzM1JSUvDyyy+72hHxiLWkpATPP/88+Hw+RCIRXn75ZWRnZ2PlypU4evQoUlIcS2ms\nWbMGQqEw7rF6x3vmzJmgX/9EHFvveB9//HE0NTUBAGpqajBs2DC8/vrrSXF8fX1+9evXLzHnLtvJ\nff311+zSpUtZlmXZn3/+mX3ooYc63Gf9+vXsPffcw65evTre4XVKgY7pkiVL2JMnTyYitE7N33G1\n2+3s1KlT2crKSpZlWXbTpk1sWVlZQuLsTIJ5/7Msyx49epSdP38+a7Va4xlepxXouN54441sa2sr\nazKZ2Ntvv51VKpWJCPOKFOw5HW+ffPIJu3LlSpZlWba1tZUdN24cu2nTJvaf//ynx/0aGhrYyZMn\nsyaTiVWr1a6f481oNLLTpk3z+NuDDz7I/vjjjyzLsuyyZcvYb775JmnidbdixQp2w4YNSXl8165d\ny06ePJmdNWsWy7KhHdN//etf7JtvvsmyLMtu376dff755+Ma69y5c9kzZ86wLOtoF7744ossy7Js\ncXEx29zc7PHYeMfqK95QXv9kiNdJqVSyU6dOZevr61mWTY7j6+vzK1HnblLN8QpHoBL0R48exfHj\nx4OuRkUCH9PTp09j7dq1mD17Nt57771EhNgp+TuuFRUVUCgU+OCDDzBv3jwolUrqRQxCMEtQsCyL\n559/HitWrACfH9mitleLQMd1wIAB0Gg0MJvNYFkWDK3TFzXxWFYlHHfccQceffRRAI73FJ/Px6lT\np/Ddd99h7ty5ePbZZ6HVanHixAmMGDECIpEIqamp6NmzJ0pLS+Meb2lpKQwGA+677z4sWLAAx44d\nw+nTp3H99dcDAMaOHYv9+/cnTbxOJ0+exIULF1BUVJSUx7dnz5546623XL+Hckzdz+2xY8fiwIED\ncY31tddew6BBgwAANpsNYrEYdrsdVVVVWL58OYqLi/HJJ58AQNxj9RVvKK9/MsTr9NZbb2HevHnI\nzc1NmuPr6/MrUedupy8Z6K8EfUNDA9555x28/fbb+OqrrxIYZecSqKz/nXfeiTlz5kAul+ORRx7B\nnj17EjaUpDPxd1xbW1vx888/Y/ny5ejZsyceeughDBkyBGPGjElgxMkv0LkKALt370ZhYSElsiEI\ndFwLCwtx9913QyqVYsKECUhLS0tUqFecYM7pRHAOE9JqtVi0aBEee+wxmM1mzJo1C0OGDMG7776L\nd955BwMHDkRqaqrH47RabdzjlUgkuP/++zFr1ixUVlbit7/9rcdFgpSUFGg0Gmi12qSI1+m9997D\nww8/DAAYOnRo0h3fiRMnorq62vV7KMfU/e/O+8Yz1tzcXACOC/IffvghPvroI+j1esybNw//93//\nB5vNhgULFmDIkCFxj9VXvKG8/skQLwA0NzfjwIEDeOaZZwAgaY6vr8+vl19+OSHnbqfv8fJXgn7H\njh1obW3FAw88gLVr12L79u3YvHlzokLtNPwdU5ZlsXDhQmRmZkIkEmHcuHE4c+ZMokLtVPwdV4VC\ngV69eqFv374QCoW4+eabk+ZKdzILZgmKrVu34p577ol3aJ2av+NaWlqK7777Drt27cLu3bvR0tJC\nF7aiKJmXVamrq8OCBQswbdo0TJkyBRMmTMCQIUMAONY/O3PmTIf4dTqdR0MmXvr06YOpU6eCYRj0\n6dMHCoUCzc3NHnGlpaUlTbwAoFarUVFRgRtuuAEAkvr4OvF47c3IQMfU/e/O+8bbl19+iT//+c9Y\nu3YtMjMzIZVKsWDBAkilUsjlctxwww0oLS1NilhDef2TIV7A0e6ePHmya3RJMh1f78+vRJ27nT7x\n8leCfsGCBdi8eTPWrVuHBx54AJMnT6a1V4Lg75hqtVpMnjwZOp0OLMvi4MGDrg8G4p+/49qjRw/o\ndDpUVVUBAA4fPozCwsKExNmZBLMExalTpzBy5Mh4h9ap+TuuqampkEgkEIvF4PP5yMzMhFqtTlSo\nV5xkXValqakJ9913H5588knMnDkTAHD//ffjxIkTAIADBw7gmmuuwdChQ3HkyBGYTCZoNBqUlZUl\n5Dl88sknWLVqFQCgvr4eWq0WN954Iw4ePAgA2Lt3L6677rqkiRcADh065DHKIZmPr9PgwYODPqYj\nR47E999/77rvqFGj4hrr559/jg8//BDr1q1Djx49AACVlZWYPXs2bDYbLBYLjh49imuuuSbhsQKh\nvf7JEK8zzrFjx7p+T5bj6+vzK1HnbnJcRovAhAkTsG/fPhQXF7tK0G/btg16vZ7mdYUp0DF9/PHH\nsWDBAohEIowZMwbjxo1LdMidQqDj+sILL2DJkiVgWRYjRozALbfckuiQk16gY9rS0gK5XE5zkEIU\n6LgWFRVhzpw5EAqF6NmzJ2bMmJHokK8Yvo59Mvj73/8OtVqNNWvWYM2aNQCAp59+Gi+++CKEQiGy\ns7Px/PPPQy6XY/78+ZgzZw5YlsXjjz+ekOqsM2fOxDPPPIPZs2eDYRi8+OKLyMjIwLJly/Daa6+h\noKAAEydOBJ/PT4p4Acdc3+7du7t+X7FiBZ5//vmkPL5OS5cuDfqYzp49G0uXLsXs2bMhFArx6quv\nxi1Om82GF154AV27dsUf/vAHAMDo0aOxaNEiTJs2Dffccw+EQiGmTZuGwsJCdO/ePWGxOoXy+ify\n2LqrqKhwJbWAY/H5ZDi+vj6//vjHP2LlypVxP3c7fTl5QgghhBBCCEl2nX6oISGEEEIIIYQkO0q8\nCCGEEEIIISTGKPEihBBCCCGEkBijxIsQQgghhBBCYowSL0IIIYQQQgiJMUq8CCGEEEIIISTGKPEi\nhBBCCCGEkBijxIsQQgghhBBCYowSL0IIIYQQQgiJMUq8CCGEEEIIISTGKPEihBBCCCGEkBijxIsQ\nQgghhBBCYowSL0IS7ODBg5g8eXJIj/n444/x0UcfxSgiQgghxBN9VxESOUq8COmEjhw5AqPRmOgw\nCCGEEE70XUWIJ0GiAyCEAHq9HosWLUJVVRXS0tLw3HPPIT8/H6+88goOHToEm82GwYMH409/+hMO\nHDiA3bt3Y9++fZBIJJg4cSKWL1+O5uZmNDY2Ij8/H2+88QaysrIS/bQIIYRcQei7ipDIUI8XIUmg\nrq4O9957Lz7//HNMnjwZTz31FNauXQs+n4/Nmzdj69atyM3NxSuvvIIJEyZg/PjxuPfeezF37lx8\n8cUXGD58ODZu3Ihdu3ZBIpHg888/T/RTIoQQcoWh7ypCIkM9XoQkgQEDBmDkyJEAgBkzZmDFihWw\nWCwwGAzYv38/AMBisfi8Mrhw4UIcPnwY77//PiorK3H+/HkMGzYsrvETQgi58tF3FSGRocSLkCTA\n43l2PjMMAwB49tlnMW7cOACATqeDyWTq8NjVq1fjxIkTuPvuu/GLX/wCVqsVLMvGPmhCCCFXFfqu\nIiQyNNSQkCRw9uxZlJSUAAA2btyIUaNGYezYsfjoo49gNptht9uxbNkyvPbaawAAPp8Pq9UKAPjh\nhx+wcOFCTJ8+HVlZWdi/fz9sNlvCngshhJArE31XERIZ6vEiJAkUFBTg7bffxqVLl5CVlYVVq1Yh\nKysLL7/8MmbMmAGbzYZBgwbh6aefBgCMHTsWzz//PADg4Ycfxl//+lesWbMGfD4fI0eOxMWLFxP5\ndAghhFyB6LuKkMgwLPXzEkIIIYQQQkhM0VBDQgghhBBCCIkxSrwIIYQQQgghJMYo8SKEEEIIIYSQ\nGKPEixBCCCGEEEJirFNVNWxs1CQ6BEIIIQmUk5Oa6BACisZ3lVwuhlbbcS2kZEXxxhbFGzudKVaA\n4o21aMTr73uKerwIIYSQJCMQ8BMdQkgo3tiieGOnM8UKULyxFut4KfEihBBCCCGEkBijxIuQBDDb\n7DBZ7aBl9AjpnJqbmzFu3DiUlZUlOhRCrnoWmx1Gqy3RYRASUKea40VIZ2VnWeyrUuKT0/U4WK1C\npdIAOwsIeQyGd03FrX0yMX94V+TJxYkOlRASgMViwfLlyyGRSBIdCiEEwNcXmmG22XHX4LxEh0KI\nX5R4ERJju8tb8Px3ZTjdoEOqmI+be2Vg+qBcSAQ8tBgs+KlahdU/VOJvB6qwcEQ3PD22D+QiemsS\nkqxefvllFBcXY+3atT5vl8vFEc8T4PN5UChkEW0jnije2KJ4/ROIhRAAYe2Tjm1sUbyeqHVHSIy0\nGCx4+ptz+KykET3TJXjrzoGYOjAHUmHHBll5ix5v/XgR/zhcgx3nm/HOlEH4Rff0BERNCPFn8+bN\nyMzMxM0338yZeEWjgpdCIYNSqY94O/FC8cYWxeufXu94z4WzTzq2sXU1xktVDQmJs0M1Ktzy4DMO\n4AAAIABJREFUz0PYfrYJz4ztg/0PXI+ia7v4TLoAoCBThtcnDcTWeSPAY4C71x/Dp6fr4xw1ISSQ\nTz/9FPv378f8+fNRUlKCpUuXorGxMdFhEUII6QSox4uQKPvweC2Wfn0e3dLE+HrBSFzbJfh1h37R\nPR1fLxyFezefwu+2lUBptOD+Ud1jGC0hJBQfffSR6+f58+djxYoVyMnJSWBEhBBCOgvq8SIkSliW\nxUt7y7H4q3O4sZcC3ywcFVLS5ZQhFWJT0TD8ujAbz3x7Ae8frYlBtIQQQgghJJ6ox4uQKDDb7Fj8\n1VlsOlWPecO64q8TCyHghX9dQyzg4R/TB+P+Laex9JvzyE0R4c4BdFWdkGSybt26RIdACCGkE6Ee\nL0IipDVZMffjk9h0qh5Lb+6NV+/oH1HS5STiO5KvUd1S8fD2Epys10QhWkIIIYQQkgiUeBESgQad\nGdP+eww/VLXib5MGYMmNvcEwTNS2LxHw8cFdQ6CQCLHg01No0Jmjtm1CCCGEEBI/lHgREqbyVj3u\nXHcUZS16fDjzWswe2jUm+8mTi7Hu7iFoNVhw7+ZTMFntMdkPIYSQ8JU0alHe0nnKZhNC4o8SL0LC\ncKxOjcnrfobGZMWns4fjtr5ZMd3ftV1S8dadg3C4Ro2l35yL6b4IIYSErqRRh2OXaUg4SRyrnS7M\nJjtKvAgJ0Z6KFkz/7zFIBTxsnzcSo7qlxWW/UwbmYPEve+G/Jy7jv8fr4rJPQgghhCS/WrURW0sb\n0WqwJDoU4gclXoSEYNOpy5j78Un0VkjxxfyR6Jcli+v+n7ypN8b2zsDT356nYhuEEEKIG5Zl47qv\nZBr6f1nrmAPeaqTEK5lR4kVIEGx2Fs/tKcMj20txQ/d0bJ07Al1SxXGPg89j8Pepg5AhFeD+Laeh\nog9YQkiI6rUmVLQaEh0GuUqwLBu3Xpj4pV3A2SY9vjjXCL3FFse9cnM+d14UC3yR6KPEi5AANCYr\nFnx6Em8fvISFI7phY9FQpEkStwRetkyEf0y7BtVqExZ9cTauV/gIIZ3fvotK/FynTnQY5CpxplGH\nPRUtUMbhQqHNHr/vw8taEwAkTeJlb2sLUNqV3CjxIsSP8806TFp3FLvLW7DqV4VYPbE/hPzEv22u\n756OP99agK/ON2HNT5cSHQ4hhBDik7Kttysew/KscUy8nB1LyXLt0xkH9Xglt8RdtickyX186jKe\n/PocpAI+NhYNw9jeGYkOycMD13XHT9VqrPyuHCO7pmFMT0WiQyKEkLBY7faoLDxPrm7x7PFi2vqW\nkiTvcsVBaVdyo085QrzoLTY8/mUpHt5eiqF5qdh933VJl3QBAMMweGPSAPTOkOK3n59BfduwB0II\n6UxaDRZsLW1ErdqY6FBIJ2eNUvdTrdqIlgDz0pwJTrIM93fGQR1eyS1uiZfdbsfy5ctRVFSE+fPn\no6qqyuf9li1bhldeeSVeYRHi4VyTDr/+z1H898RlPP7Lntg8Zxi6JqCIRrBSxQL8c/o10JiseGhr\nCa3hQYgfWq0WpaWl0Otpkdtk4iy8UK8ze/z9bJMOeytbExES6aTccyCNyYpqVXjJ/I/VKnxX0eL3\nPrwkS3Cczz3JwiJe4pZ47dy5E2azGRs3bsSSJUuwatWqDvfZsGEDzp2jxWFJYmw6dRm/+vcRNGjN\nWH/PUDwztqBTDH0ZnCvHXyf2x76LSqzaW5nocAhJSjt27MC8efPw5JNP4v3338eaNWsSHRJpw7Rd\novfuODjdoEWT3uzjEYT45n4KfVvWjJ9qVDHbl/O8jePoRr+CrWqoNlpR0qiNfUDEp7i1Ko8cOYKb\nb74ZADB8+HCcOnXK4/ajR4/i+PHjKCoqildIhABwDC187MtSPLK9FMO6OIYWji/ITHRYISm6tgvm\nD++KN3+8iK/PNyU6HEKSzgcffIBNmzZBoVDg97//PXbu3JnokEgbZzvRniRDtkjkDBYbLLb4j8CI\n57C/WA01bNCZceCiEmqjNaTH2YMcavi/qlaUNOoS8vqQOCZeWq0Wcrnc9Tufz4fV6jipGhoa8M47\n72D58uXxCocQAI6hhXf8+wjWn7iMxb/shU9nJ/fQQn9euL0fhubJ8cj2UlqjhxAvfD4fIpEIDMOA\nYRhIpdJEhxSyKykxOVqrxuYz9QDaGyLJ0nNAIvf56Xp8faE50WGERWMKLuFxVTWE4715tkkXlffo\ngYtK1GlN2FnejJoYzHt0Rmi7gj5POpO4JV5yuRw6nc71u91uh0DgKKq4Y8cOtLa24oEHHsDatWux\nfft2bN68OV6hkavUJ6fr8at/H0GT3oINRUPx9Ng+nWJoIReJgI9/zrgGPAYo3nQCjToaokOI06hR\no7B48WLU19dj+fLluPbaaxMdUlAMFhvqNCZY7XZ8VtKAMw2RDRFKxJpDNjvboUFaqWy/OOQcGkXN\nwMQ636zDj5eUUdue2atHJR7t/Gjs4uc6TWj7ZIGKVgNON2hxriny+aPuQwWVIfR6BXt8+W3b5+rw\najVYsP+i8oq60JNM4lZOfuTIkdizZw8mTZqEY8eOoX///q7bFixYgAULFgAANm/ejPLyctx1113x\nCo1cZYxWG/648wLWHavDDd3TsXbaYHTppL1c3noppPhw1rWYuf445nx8AltmD4dcTKtGELJ48WLs\n3bsXgwcPRt++fXHrrbcmOqSgfF/ZCr3Fhkn9swEA5a0GDM6VB3gUtxZ97Bex9fZ5aQMkAh4m9c/x\neXv7ekhXZkOPZVnUa81IlwggFfITHQ6nk/WBk/ojtWr0TJcgJ0UUh4iSG+N2wcC5fpglCgWu+DzA\n0raZWCQ/Ap4z8fK97cM1amjMVmhNNqRJqP0QbXG7vD9hwgSIRCIUFxfjpZdewjPPPINt27Zh48aN\n8QqBEFS0GjDpPz9j3bE6/OGGHtg8Z9gVk3Q5jc5Px/+bfg1O1Wtx75bTHa46EnI1+uyzz9DS0oLs\n7GyoVCp89tlniQ4pKM4eKp5rIj93Q6zVYAn4fhcEUYrNYLHBaI1uz5jRz+K57XNlorrLpHH8sgb7\nLymxu9x/lbxkZbHZYbLaYbOzqFIa8L+q8CpNxqPMeTzPoVjN8eK7HahYDL/lt7X8azRXx/INJy5r\nXMOak0HcUlkej4fnnnvO4299+/btcD/q6SKx8sXZRiz6shR8hsGHM4fgV/2yEx1SzEzol4XXJw3E\noi9K8fC2Erw7dVCnHkZJSKTKysoAOBpJJSUlUCgUmD59eoKjCp6zbedvgdg9FS3IkApxax/u4kC8\nIBKvr9oK9Nw1OM/n7XaWxfHLGgzOkUMsiPxzhXFraO4ubwHDwO9z6GwqlY4GrqmTXQSrURvBwDH0\nzmSzY9rA3Ii2F0l+0qw3o0FnxqAc/729zl0EmwxVtBpg15rRV97eg8f1DjHb7BDwGNdFEFfPEev2\nmCgkSjyPxCv6mZdz+yWNuoDHM5pYlsX5Zj36ZEgh5MevPXKhJbmWD4ko8WpsbEROju+hA4QkCzvL\nYtXeCrxx4CJGdE3FP6YNRk9F55tYH6ria7ugWW/GX/aUw8ay+PvUwRDF8cOOkGSyZMkS188sy+LB\nBx9MYDShcw5h4mqGORuarQEWfXXv8WJZ1iPpCdYlldHRYGWBUd3SQn68P0ojd/w2O4vPSxswrEsq\n+mbKorrfq02jzhxwuODB6tiVYg/V923ruQWbKHxe2ujx+7kmHWo1JtzildD/XKeGTCb2SLy4bD/b\niNwUEW7qlQEA4AcYsheMZr0ZLIBsme/9R7JtLvwodj3Wa02wswiqKFmDzoxTDVqoTFaMzk/nvN+5\nJh3y0yRIESXvsNxIRNQKW7RoER5++GHs2bMHdlq4lSQhrcmKez89hTcOXMS8YV2xde6IqyLpcnr4\nFz3x3Pi+2H62Cf+3+VTUhw8R0lmYzWbXv9raWlRXV4e1HYvFgieffBJz5szBzJkzsWvXrihH6tvJ\ny9FfdydQm25raQN+8tH4dj6sSmnwW5K6qa2XIlqcwyhLG3UB7hl//npYwm3m2uys3+OrNVmx+Ux9\nwGTbW63aiP9VtaLcrScgmNLibITdOaG29612O/ZWtgasMmh1a386XwfvnqJTDVq0BHmc/D1L9/PZ\nmcBY7WzYwyi/r2ztsEi4e89oOEc80MUUfhRXft53UYkDAQqytOot2HymHjqzo/1hsHCfawaLDaca\ntNh/MXpFXpJNRD1e69evx4ULF/Dpp5/i3XffxZgxYzBz5kz06NEjWvERErYqpQELPj2Fc006vHh7\nP9w/Kj+sq7ud3UPX94BEyMNTX5/HvE9O4d93DbliryQRwuWOO+4AwzBgWRYSiQT3339/WNvZunUr\nFAoFVq9eDaVSienTp+O2226LcrQdGQM0jINtoLknCKcbtBjaJZXzvlY7i2q1EdfD8+q0e5u2TmPi\nvJjl3aAMFE8oNCYrLrToMbxLasif6z/XqVFfqcQdvRVh7TvWTFY7ajRGlDUboDFbfQ751Jqt2NfW\nOK1UGpAq5gc9nFzf1vDVmtsvxG0728h194Rp0JrRpDfjdIBKniZrdHuFgk0w24casuDDszKn0mgB\nywIZUmFo+2bZmM/LDpR3hdNMMlhsnIVjKlsdCX5jW2EfaxAdNRa7HdUqI0w2OzQmK4aF8T5PVhHP\n8crLy0OPHj1w+vRpnDt3Di+88AL69euHJ554IhrxERKWU/VaFG06DouNxYaioRjX+8qZLxCOe0fk\nQyLg47EvS1G06Tg+mnkt0iWhfSEQ0pnt3r07Ktu54447MHHiRACORhKfH5+LGKHmJ60GC4Q8xm9V\n0wstevRWSEOuXObeMI306jmL8JKvHy+poDFb0TdDFnL8Fa0GyGTJWVRJa7ZiT3kLLAG6I/dVKaFr\nK7xS0WpARasB4wsyofDxuW5nWY95Q+H2XIWTI59v1oXdT8ZjghvKF0xDPhShPk+WBRivfk1nIRWu\neZKc2wpt12GJZo+X01fnm3w+10adGWcbPedY+Tu+7RVOgZ9q2nvb89OunEqaESVejz76KM6fP4+p\nU6di9erVyMtzHHQqkEES6adqFeZ+fBIpIj62zB6K/tkpiQ4pKRRf2wUyIQ+/21qCGf89jk3FQznH\nlRNypSgqKuK8Urphw4aQt5eS4vg80Wq1WLRoER577LEO95HLxRAIIkvI+HweFAqZK0FIkQphbuvR\nUCg6zm+y2VnXfRUKGXZU1gIAiod387ifRcCHTNbeEJKlSqDwatB4JyXe+0uzspCpHEOuMhQyKNIk\nrniD2c62M/XtsabLoOfxIGsxQi6XQGZvv6/78wEAscUGmUwMqZAHEZ8Hm5GPtHQpFG29CnqzDSfq\n1BjdQ+HRuLTYHFfP+7TNC5PJxODxGJ/HMVx2r+PvLiVF7Co37n2b9zy7HcdqIZSI4J4+padLYbGz\nSEuTuoqjiKUisELPhMMuFHbYfo3KiP9VtmBi/xxkyBxbTTXbIdNYkJoqcd3f/bXy9Tfn37meozce\nTwWZTIwyjQUAA5lMjLQ0KQRiQdBLnBj5fMiaDZCliCBjHc+71Q7X6+jE6i2QyRzDT1ttwAC3OH3F\nrTRYXOeMr3NBlqKDken4XvN+7qkmG2Q6x3GUCHmQacyQyyUhHSfv+7mfRwBc23Pn673muK8eOjBI\nS5NC4WfOlUJjRrOl4/noPBdTUrSw8vlIV0gDXqD1dd64O9yoA4/neP1T5WLIrCxSpALO42Jse4+L\nBTzw3SqhpqdLoZCHd7Ek2NfCiev4RktEidc999yD4cOHIyUlBQ0NDa6/r1+/PuLACAnH7vIW/N/m\nU+iaKsbHxcPQI12S6JCSytSBuUgR8nHfltOY9tExfFw0FN3S6BiRK9drr70W9W3W1dXh4Ycfxpw5\nczBlypQOt2u1poj3oVDIoFTqodc7tiWy26BvW0xVqexYpctmZ133dX+c932VOrPrNgBobtVBYPGc\nQ+N+u69tqNUG1300agOUdrsr3mC20+h2v1alHiqtCXq9CVpe+2OaWrQdnoPeYoNeb4JdwENzW6NM\nqdIDJkfj8MdLStRqTEhlWOS7fa4drFahRm0E+mQiQyqEXm+CTCb2eRyDsbeyFQyAm3tnuP5mZ1nO\nY27Qm1w9WP/aX+HqGdCYrPi2rBm/6J7uitf7mAHA8aoWlCpNyBYyuK6tKIFeb+pQol+lNkDple+f\nrVVDrzehol4FJsPRmNRoHK+fRsOHUinssN+Ll9VIkwg6xNLq57zyZnc7H51KqpWoVBowpociqGIM\nWr3jXFXDDn3bMLWzNUpkeI2oVBosrn2d0ZswMF3ssW/398PhsiacqNdgbO8MZMtEPs8Frdbo873m\n/dy1GmPbcRTAIuA5ftY6jmmwx8n7fu7nEQBoBEyHbfh6rzniNkGvN0Ol0kNi457PrdeZOuy3xWDB\ndxUtuLGnAjqdCXqTFUqlHmyAxMv7OHtTqY2w8/mO15HvuL/IbuM8LiarHXq9CRYez2NNNJXKAFGY\nc9SDfS2cuI5vKHJyuIdwR1Rc4+jRo3jvvfcAACtXrsTatWsBAGJxcnbhkyvbrrJmzP/kJPpmyrB1\n3ghKujjc1jcLG4uGok5jwpQPf0Z5a3KVWiUkmvLz85Gfnw+r1Yrt27djy5Yt2LJli+u7K1RNTU24\n77778OSTT2LmzJlRjpZboOFP7sPHzgSYE+Mu0qJpkVa75hr2dvBSx6IeB3xMuA9m/86iQrYoleZu\n0pvRqOcuGnL8siaoYhXOohi1Gv+JunOoXZ3b/byHtkXTzvLmmGzXWbHSX+VKd+1DDdv/5ut8DVRy\n3X0oq7PAxt7KVpRxlBmP5DQpa9HD5GfNOqd6rQlVSkP4O4qypraiIQ3a4IrhNOnNqFZxrwN2rE6N\nk5c1PueLGSx27Cprdq1R6C6cYbDlLXpsPlMPm52F1mxFs5/3ZjKIKPHas2cPFi9eDAB48803ozaG\nnpBQHapR4b4tpzEwJwVb5gxD7hUyFjhWbuihwJY5w6Gz2DD1w2MoaYx+xTRCkomznPzRo0dRXV0N\npTK8qll///vfoVarsWbNGsyfPx/z58+H0Rj7hUjdmyMXlQZHD4777W53KG3yrPrXpDdD21YZzrtZ\nE878KvdHuDd6A1Wf86VJZ/HZ0HWvHueMUeVj+76id25PabTg5GUN575ZlkWT3hz1OUJlLXqUxKDy\novuQRF8N2mAarQerVQETvXhoCWKxb18LFFt9ZF6hnMHu9z3OcW6E+o5g4VnVMJgqk/suKnGkVt1x\nW3GY5OU8nu7Ly7h2GyCfP9ekg9Fqw97KVo85WN7KWw04z5HYmmx2qExWVLT6Szw9D4S/uhrOzzuT\nzY5vLjTj+8pW6C021Edh5EEsRJR4MQwDs9nx4WixWKK+ejchwSht1GHuxyfRJVWM9fcMpaIRQRrW\nJRWfzx0BHgPcvf44zjUlX4lmQqJFJpPhwQcfRF5eHlatWoWmpqawtvOnP/0J+/btw7p161z/JJLY\n9667JzWHa9WuNZYMFhtUAXoQ9la24psy370YkX5rO9vBlS16fFvWHHJjp5Ljqr93XE1uV7Hdh9g5\nEz+10dphLt/3Fa0436LnLM6gNlmxt7IVh2s6NoBD5d388ZUguHOPKdimE59hUKs2wmKzh93fVaM2\nolkfWvl5p8ibeO1Rf1fRgu1nG322G8ta9DhYrfJ5bvrqtQzcG+x+38C9Y5EuWhyLRY+97SprDqln\n2xdfNTbce1K9h7K2Giw41aDFkTDfL8EcFud9gjmCzp5s52Pcn86e8hZX1c9kE1HiVVxcjClTpuAP\nf/gDpk+fjuLi4mjFRUhQqlVGFG06DhGfh01FQ6mnK0QDslOwZc5wMAxw94bjAa5AEdJ5MQyDxsZG\n6HQ66PV66PXJPcS2UWvyaMD5aojoLTZ8db4Ju8pbwionDwAtegsuh9gD4r4JZ4zOq/wqY2i9Xiwb\nuJHFAtCYfM/vYFnHgs47y5s9huIFw9njEGrMwfDX+DZabfi8tAEXWoL7vHVuy2C14cdqFQ7XqH33\nACTo2nerwRIw+XfoGKB34x5w9ETVqI2uc9X9Ub6S6JB6vALcefvZRo8y+8Gufen+csTjZVCZrB16\ntoP+DHD+7/YA58+1GqNrnS3vxMV5HgaquOnJvZom1y3tnK9voAsX9VoTvjzXhDqNybVd9/eEcy00\n79E8F5UG7Klo8Xh/XlIZsZPjwlQsRJR4zZo1C+vXr8dvfvMbrFu3DjNmzIhWXIQEpDPbMPeTk9CZ\nbdhYNBS9rqKFkaOpb6YMnxQPg9lqx+xNJ5J+fDQh4XjkkUfw7bffYtq0abj99tsxZsyYRIfESWm0\nYNeFZpyu939Fu95tPoazfHWozrfosT/AAqje3Ie0OZvNzt4mf80lrqFlgXshuIcasXD0XAHtDUPW\n7TZ/uNZ/+r6yxWMY2OYz9fi8pCHouUkAYPOzc2fDNtjt8b2evMZs9TnHy9/zjcacMPfX3b1nc09F\nC3aFef4Z3BIvvcWGzWfq/d7fZ+IVxPnjFKg3yjup+PJcExo5FgFnOU40911caNYHtXAzV6+symgN\naiis1mz16BX2xz2+Bp0Zh2tUrtdWa7Z5FLWIJu/Xyfs9Xd6i5+yZ91bedtGixeB7qLKT95Dfk/Va\ntBosHvPwDteooDZZ49JTCUSYeJWUlODNN9/Ehg0bsHr1ajzzzDPRiosQv1iWxZIdZ1HaqMP/m34N\nrsmVJzqkTm1QjhzrZl6LGrURCz49FfRVPkI6C5VKheLiYtx2223Yv38/li5dmuiQODkbBVzD8Jx+\nrmtPDnxNVI8Wfw1bZ2OlfT4O93Z8DVGKtKnTorcEXBDWyc56NrydV9W9Y2jWWzoUPrCxrN/k1nt+\nlb9j5p1IBToG3m1yu59E1Fugc+ii0oBLfookcInWMK5D1SroLTaYrPYOc6N89cwE6gnx5Ue3Cwvh\nnG+hDs1038eJeg2+qwiclKpcczA9I9SYrT4LzThdbHt9lQbuXtszDVqfrzEL4IeqVlxUGUMaRhpM\nIulLoF1Uq4Pvsa7zGNLs2PKZBv/TJU7Va109Ye6xOC8axSvxiqic/NNPP4158+ahS5cu0YqHkKD8\n62gtNp9pwDNj++CWPlf34sjRcn33dKyZMhj3f3YaS78+jzcmDbhiVoon5MCBA/jb3/6G8ePHY+bM\nmejRo0eiQwootCE9wTEEUXHNGwuvoVTuV8y1ZhRkyFyJgNJowYVmPfpldVwHx+Djgg7LBi4JoTFb\nOSvFneEoDFTRamjvAWvbwQ9VrZAJ2+ute98eTf4KWIS6fq33EbLYWFh8dKm5P49DNSrkeQ2999X4\nPuyjwEM86Sw27DjvmG851q08PxfvxvHRWnXA5LLerceqgaP3yp8zjVooAi3S7faaRrveQYufpOpw\nrRoKidCVUDj273yc4wKCcwqBs9Kzr+iCiTicgjGMx3Hxus3toFWrjEH32LlzH6oc6Dw41+w/fpsd\nEETUHRWciBKv7OxszJo1K1qxEBKUwzUqLN91ARP6ZuLRMT0THc4VZcrAHCy5sRde3VeFEd1Sce+I\n/ESHREhULFu2DGazGbt27cJzzz0Hi8WCDz74INFhxd3RMBrarFfm5d5+qtWYcEllBNO2KG6txoRa\njcln4sW5/bb/6zgKc4QzjNK9N9C9GmKoJaz9Vag7VqfGoBw5xCG21kJtlns3WIMZCnZJZfRItFiW\nxaEQiiL4KhUeKJ/YV9WKFBEfw7umBb0fd975qM3VI9m+Y4udRVmLHn3bFlEO1NiOFl/DDbnOm0gG\n6nEd43qtCT9Vq3FHYRbqvZJ6rvL/By+pfF7s8CWYpCfYpJVzSDHH/S8qDRFdAAgnz23QmSEV8JAn\nF7vOu07R45Wfn4+1a9di0KBBrivjN910U1QCI8SXZr0Z9392Gl1TxXhnyiDXOh8kep68qTeOX9bg\nj99ewKhuabg2j3shQEI6kxMnTuCHH35Ac3MzJk6cmOhw4kIbYol3X1frazUmv+siKo0WZIiDqSbr\ne15StNs7wfY4+KqQ5z3XZo+fYWLlrQZY7CxG56ejSsk9XM97L967tdtZVLQaOIeLBnt4TtRrIBPy\nIBXyO9wW6iH2VyqcS73ODOh8F8xwxzW00XuEBddwxuOXNVAa4zcnB4DfMuuBXt9QtHIUejndoIXF\nbsfu8hawwoia7q73h3uCxDWc0lHlEeCH0E17wG1op/ujvJM758sdbNKlNVvxzQXHguMeMQYdWTvn\nBai7Buc54mAjX9MwWBG9ehaLBRUVFaioqHD9jRIvEkt/3HkBTToLvlowEgoqGx8TPIbBW3cOxC3/\nOozfbyvBNwtH+fwiJ6QzmTRpEgYOHIhZs2bhhRdeSHQ4cRPsZHWnYz7WNjpUo3IlXl+fb4LOK0E4\n36zHAK/EK9AaTe6iPTTL7K+yhc/9O/6/0KzHiXrudb98uaQyYniXVJ9rQrEsi4PVqoDzkuq0Js7e\nPmdc/KASW+DHat8JE9eaVbFQqzFBJhNz3u5eNdDdCa51tXwcvngvPuw+LM5gsXX4TmQ8qvd1DPhs\nkw4DslM4t+98D/xQ1eo3Dp3FBlmAxMu5d+/eLovNjmq1KaQE46caNWrURtw1OC/ox6iDrBJ6ukEL\nc5BDnxm0FxM66HaOq4yRL2XlfOV+rlOjIEMKhSL43vpwRJR4vfTSS6ioqMDFixcxYMAA5ObmRisu\nQjr46lwTNp9pwFM39cbQLtQLE0tZMhH+NmkgijedwMrvyvHChMJEh0RIRD766CNkZASeQ3Il05q5\nG0TVKiO6p0sCFlrwTrqcLnn1+Gw/2+jzfrU+Fn6O9oXmUJMnk80OjcmKS+rARSZ8Vd3bxvFcWfie\n6xXMQsfe8cW2KRicWHcIcBVt4Drn4sm9M+6r800Y2S3NIyH06KzzcaBON2hR2qjDnQOyIeDFYSKR\nD1znqT/OhdotIVxIcaQywZ0tXIss++JrhFN9GHP2uDTozGjQmTG4Z2zrBkSUeH344YeBJCLEAAAg\nAElEQVT49ttvoVKpMGPGDFRVVWH58uXRio0QF6XRgqe+OYfBOSlYRPO64mJ8QSZ+Oyof/zhSg9v6\nZmF8ARUxIZ3X1Z50AcCecu6r6T/VqNA9XcI5oopl2YiLfSiNlg7zjHhMbIpbhGpnWTMU0uiOouB6\nXknwdAH4HT3n09mmjsUJQhnup4zBemmJ0qgzI8Wt16vSbQ1MriNiY1nozXakSTomXscva5AtS951\nSEM5Z93zo2jOBgm1KE3wgk8UoyGitPuLL77A+++/j9TUVCxcuBDHjx+PVlyEeFi+qwxNOjPevHMg\nRPzEXC26Gv3plgIMzJZh0ReltL4XIZ1cMEUZuJKrQzVqzl6sUHjPq8qUCeM7V4eDrwjq/Qz/C26b\nvp9XEjzdsFS0eg7v21nWjM9KGhIUTXx5J52XVEZUt/UGsQi+xLqveYWAIym94Kf3J5SkVWu24lAY\nc/T82Vvpfwiku1jlR7GY03/8siZm65ZxiagFy7IsGIZxTYgUiZI3Wyed1+7yZmw4eRl/uKEnDTGM\nM6mQjzVTBkNptOCPOy8kOhxCInLgwAFs3LgRpaWlMJkia1RfbaqDGIYXDjaOk9oD8S6sEelaVVzr\nCiVDohkN6hALt8RLoEWYuR4T2nC69rlqZV4Jk7819bgSr2g6We973a5IBPNam21217piTqGugeYP\nPwYZnfdrFw8RDTWcPHky5s6di9raWvz2t7/F7bffHq24CAEAaExWLNlxDv2zZFh8Y69Eh3NVGpIn\nx6NjemH1D5W4Z0gexhdkJTokQkL22muv4fLlyygrK4NIJMLatWvx2muvJTqspLKboyx1LDkWA06O\nRCTabWKuHozkeLaA9QpJAKPl57roFCA538zdmPdO7oMR7x6ZcEWjR5yL1c6GVFkxXKmiyCpGBiOi\nPcybNw9jxozBuXPn0KdPHwwcODBacRECAHjuu3LUqk34Yv4ISARUWS9RFt3QE5+VNOCpr89j728U\nHouQEtIZHDlyBB999BHmz5+PGTNmYP369YkOKekkYg6O3mJzVStLtGDXPIpUsvTweQ8dvNrFqlfX\nXTiJF3H0PkuvkDZgREMN3377bXz11VcoKyvDzp078fbbb0crLkLwQ1Ur/v1zLR4c3R3X5acHfgCJ\nGbGAh1cm9sdFlRGv/FCZ6HAICZnNZoPJZALDMLDZbOAlqLIY8VStNibNFf1AZd+jJVDJcHLlUiXp\n8MzOIB4XRuKxNGxE3zzZ2dnIzs5GVlYW6uvrUVdXF624yFVOZ7bh8a/Ook+GFE+P7ZPocAiAMT0V\nmDu0C9796RJO1WsTHQ4hIVm4cCHuuusunD9/HrNmzcKcOXMSHRIh5CpT0uh73h+5ekQ01LC4uNjj\n99/85jcRBUOI00t7y1GlNOLzOcNpWFsSWX5rX3x9oRlP7DiLL+aPjMuYa0Ki4de//jV++ctfoqqq\nCt27d0dmJi2PQAiJP3/FN0hixaNgTESJV0VFhevnxsZG1NbWRhwQIQerVfjH4RrcN7IbxvRUJDoc\n4iZDKsRzt/XD77eV4D/HavF/I/MTHRIhfi1evNhVedfbq6++GudoCCFXux3nmxIdAvHDEOPEOKLE\ny32xZLFYjKVLl0YcELm6GSw2PPZlKbqnifGncQWJDof4cPfgXKw/UYcXvi/HpP7ZyJOLEx0SIZy8\nR2YwDAOWqrkRQgjxIdRlBUIVUeK1bt26aMVBCADglX2VKGsxYFPRUMjFsS/rSULHMAz+OrE/xv3z\nEP68uwx/nzo40SERwun6668HADQ3N+Pdd99FZWUlCgsL8dBDDyU4MkIIIcnGZo/dItBAhInX1KlT\nodPpIBaLXYtROhdV3rVrV1QCJFePn+vUeOfgJcwd2gW39KH5F8msb6YMi27oiVf2VWH20C4Y15te\nL5LcHnvsMUyaNAkzZ87EkSNH8NRTT+G9995LdFiEEEKSiI1lI0uOAoho2yNGjMD06dMxYsQInD17\nFv/85z+xcuXKaMVGriJmmx2PfXkWeXIR/jK+X6LDIUFYNKYnPj3TgKVfn8d3919H66yRpDd79mwA\nwMCBA7Fjx44ER0OSRaZUiBaDJa775DEM7DTklZCkY7PHNvGKqJx8WVkZRowYAQAYMGAA6urqIBKJ\nIBKJohIcuXq8vr8KJY06rJ7YH2kSGmLYGUgEfLz8q0KUtxrw1o+XEh0OIX4VFBRg69atqK+vx+7d\nu6FQKFBRUeFRJCoYdrsdy5cvR1FREebPn4+qqqoYRUyuZLkp1E4iJBnZYnxBJKIWbmpqKt544w0M\nHToUhw8fRrdu3Tjva7fbsWLFCpw9exYikQgrV65Er169XLdv374d//73v8Hn89G/f3+sWLGCFri8\nShy/rMHfDlzEzGvy8Kt+2YkOh4Tglj6ZuGtwLv52oAp3D85FQaYs0SER4lN5eTnKy8vx8ccfu/62\nfPlyMAyD//znP0FvZ+fOnTCbzdi4cSOOHTuGVatW4d13341FyFGRbD0rYj4PphhPXg+VmB/ftgYD\nQCER4LLW5PH3wkwZzrfo4xrLlaJ7mgTVaiPn7XIRH1pz6NXqhual4kS9JpLQrggDslNwtunqWIMs\n1h+XESVer776Kv773//if//7HwYMGIDFixdz3tffl5XRaMQbb7yBbdu2QSqVYvHixdizZw9uu+22\nSMIjnYDBYsPD20qQkyLEixNoiGFn9JfxfbGzrBlPfXMeHxcN5SzdTUgiRasY1JEjR3DzzTcDAIYP\nH45Tp05FZbuJNjhHjjONsV8YXS7mw6RPrsQrQypEnVcSFEtykQDeH5NyER/ZKaKkS7zSxALOtY2S\nKakfnZ/mN/Hitx1wmZAf0jpaeXIRUB9xeAmTLROhSW+OeDtSQfJ1hAzKSYnJgtQskrjHSywWIz09\nHTqdDn369IFareZclNLfl5VIJMKGDRsglUoBAFarFWIxlai+Gry0twLnmvXYWDQUCokw0eGQMOTJ\nxXh2XAGe/uY8tpQ04K7BeYkOiZAOXn/9dXz66acef/vhhx9C3o5Wq4VcLnf9zufzYbVaIRC0f53K\n5WIIIpjzaOTzwWsxQiaL/HuQz2OQKRWiUee/8TWyTxaMPB6Gdk3FN+dCX2eIx2OCijdHIYEB3A3k\neHGPNzVNApkufnO8UiQCpKZKIdO1JzSpEgH6dUvH8WaDz8cEe3yj6Y4BOahqNaCkwXdCPqRLKk5d\n9t0bFEm813ZNxcm60HqZMjJS/O4vRSqAhc/H8G5pOFarDjrW9HRph9vSJQKojLFfaJdLKMc2JUUE\nfRRq9I3ok4Vzas/PkN4ZUlS2+j5f3cXq3B3WKwtVbu+hoV1TcSLE88YXHo8HRWrs3msRr+OVm5uL\n/fv349prr8XSpUvxj3/8w+d9/X1Z8Xg8ZGc7hpitW7cOer0eN954YyShkU5g/0Ul3jtUjXtHdMOt\nVMWwU1s4vBs2nryMZbsu4LaCTKRTEk2SzHfffYfdu3dHPAdZLpdDp2u/ymq32z2SLgDQRth7otKa\nYLez0Osj74XhMwy6SfgBt6XTGDA8SwqYrSHvV8TnQSAWBvU4nZAJ63mligTQmAM3dnukS3BJ1TGx\n6yoXe/RqyWRiVxwadXCxRwvfaoOW73kcBDYbdBojZxzu8Qp4DKz26FyV75YqRq2G47mbLCi7rIbe\n6Dsp1Wq4j5t7vKEy6UUhP1ap1Pt9jNBmg95khV7X8Rj7i1WlMnS4LUMQ3jkcLaEcWw1rhz4KhWN8\nHQeDmBdUHJGcC/6o1Y7XnAEwo+2C749R2I/FaodSGVnPc05OKudtEfUdXrx4EY8++ihEIhHGjx8P\njYY70wz0ZWW32/Hyyy9j3759eOutt2i40hVOa7Ji0Rel6KWQ4M+39k10OCRCfB6D1RP7o1lvwYt7\nQytWQEg8DB482LXsSSRGjhyJvXv3AgCOHTuG/v37R7zNWIv1t2mg7d9WkInCtvmfvDC+2wdmp2BC\nvywowiy8dFtBJsb0VKArx2LvsR5a5I1h0GGoYSjkovgVoIr1YrKxMDSPu9GbJRXiF93TI9q+gNd5\n2qdRys9DInEblpgi7NjzH63jx2MYFGRIMbZ3RsTbco+JjfHw2YgSL5vNhpaWFjAMA61W67cYRqAv\nq+XLl8NkMmHNmjWuIYfkysSyLJ74+hyq1Ua8NXkQUkRUhvxKMLRLKn4zKh8fHK3FgYvKRIdDiIfC\nwkLcdNNNuO222zB+/Piw5xBPmDABIpEIxcXFeOmll/DMM89EOdLoCraBH8zFTinH8MlAD02XCF2f\n895trjsKgy+oFO4F2WB64J0FNrqFMcRIEsb8l5gu0BrFxCDcBHF4t7SoxXBzr9Aa1v2yOhZ5cm9K\n56dJOtzOdUFALOAhQypEj/T2x/A7T96FVHHg9pX7cwtFMPmJr8N6W0FWWPvzZXjXNGTJIq8QOjin\nfURerHPViC6bPP7445g9ezYaGxtRVFSEP/7xj5z3nTBhAvbt24fi4mKwLIsXX3wR27Ztg16vx5Ah\nQ/DJJ5/guuuuw8KFCwEACxYswIQJEyIJjySpD36uxeYzDXh2bJ+IrzyR5PL02D745kIzHtlegu/u\nH41UMS0NQJLDl19+iV27diEtLbIGIY/Hw3PPPRelqCITTKU2pu1+XMb1zkCNOnBPoJDHw829FPim\nrDnUMAG0X3n3buBy5QhZMiGa9Y4hUtEaAOPeoJIKeXAfTDShXxasdhYyIR+bzziqKQS7vtf13dOx\nt7I16DgYdHxO4T5F7+IJdw3Og8Vmx5lGHS4qDbCE2eXhq6fCm7/XhR9k8ndtnhwn6z3nkHn36Ln3\ndPZWSFGpdMwrGtc7A9+HcNwDxZEpFWJPRYvH33kMcGufTFxSGV1DWN3P4WyZCEIeE5fiLAqJAMoQ\n55Zdkyv3OfTWXW+FFIVZMuwub/F7v2Dlp0lQ5qNIzO0FWbCyLOd5o5AIofQxrHXKgBw06S04cMnz\ngm6kFxjyUkSod5v76vw9qasa1tXV4euvv0ZLSwsyMjL8Xo3y9WXVt2/7ELPS0tJIQiGdxLE6NZbt\nuoDb+2Zi0ZieiQ6HRJlcJMA7UwZhyoc/4087L+Bvdw5MdEiEAAC6desGqVR6Ra0zmSYWgAETcO5T\nT4UUBqsdp9uKJIzOT8ehGhUAIEsmCuqKcf9sGeQ+LqTwGQZDcuU4o2xveEoEPNzUMwM7y9uTtPw0\nMc4169A3Q+rRKBNyjJTx9fegrrC3/e+rep37ECKRVwl5EZ8H7/y0f5YMP1Y7jpO/OWYma8fheDf2\nVMBqZ3GwWtWhMqDBagfjlWpFc3aFkM/DsC6paDVYAiaOXO22wrZeI+84x/bOwJEaNXQ+KgOO6aHo\n0DgOB59xJJDOBFjo9lrlp4ldiZfj3BWiu48erFDlyEQ+1xB1Pn/G42/tSXnXVBEKs1Kgt9iw4zx3\nUZr+WSkQC5gOSaZTulgAFUf1SKduqRIojZ6P91dZUsjjuao5AkDfTBlq1SYYrJ6vXU6KyOc5HAjX\n23Fonhx9M6QdLtI4jy9XVUkRR1eikM9DVx890eEMW+Z6PAsWI7ul4avzTW3HM3bdmhENNdy0aRMA\nIDMzk+ZkkYCURgt+89kZ5KaI8PbkQRG/aUhyGp2fjsfG9ML6k5fxxdnGRIdDCADg8uXLmDBhAoqK\nilBUVITi4uJEh8Qp2CuuvgospHr1FjgTjCxZ+3C7cOZK5af5HoI3bVAuuvm4zbsRKxXyMal/jkfy\nJubzOHtGZML25kk4c5p8bTXU75xubg16f8MJs30krnlyMfLTJJjUPxu3FXgWjzL7nDfFHVum1PdQ\nSSGP57d5yOd4vv7mQHWIymsT2TKRq8HtfpNEwPPovdS39cT2DWJtxykDcjx+D6XDYVzvzKD24eSd\nSDr5Sro4t8EwyPJ6TWQcPYTOoasSAa/DeTymh8L1s/v705c7++dgQHbH5xmo18f9+sLA7BQMyPF9\nrMQCXoeLEeFiGAbStuMxyG0IXyADslP83h7tuXUdep3bfk/qoYZmsxnTp09Hnz59XPO7Xn311agE\nRq4sNjuLR7aVok5jwtZ5Izi/SMiVYcmNvbCrvBlP7DiH6/LTkMcxqZ2QeHn99dcTHULQgv3iz5aJ\ncFHlv5zzoJyOjZlQh9J0SxX7TX64GrMA/PZG3OnV4HbnDLFHuiTsOSjeRG7JUzQbV2IBDyO7peGo\nV5lyAJAEOS8ulJzQMeTMguFdU/2W8+6WJkaj2zBEZwXDHukS16LAnLtl0OF25zy4YM4fq92RXPob\n5urknRDHYqjXgOwUHKpRQSoMLblwhuYeYq5chHquSpBe+mXJUKsxISdF2KHQhYjPuF6ToV1SoTbZ\nONfcEnMk/v5OG4YBBH5qL3gbmifHYR/nsFNBhhTlbuebryIUzteSz2NcS8ukpUnBN7f3vHLF7H0R\n5to8Oeq17cdjUE4KZ49hOLzPO+fnGBvjHq+wEq81a9bg97//PZ544gnU19cjL4/W7SH+/Xn3BXxT\n1oxVvyrEqChOuiXJScjn4Z3Jg3D7B0fw8PZSbLxnaNBj/gmJBavVih07dsBicTQAGhoakmauVrgG\nZMsCJl7d25IW93dfqFX8wm0IR2NNP/eehRQRv8McEO/hbf6uivfPkqFK2fF4eT+/YIZ9eePqXeLi\nfe9ADWh3chEf0wflgscwHolXjlfPW99MGbqlivFV2xC467unwxjikDL3fTurxznPn0w/vTTOY+rr\neXnPzYrHV0O0Evi8FBFyU4JPvLJlItf7wOaVefEYxjXPnWEYjO2dgaO1atdQSl9u7ZMJcYoYKpUB\nNjuL427rqHVPk/hdRNrXKXp7gEIXvy7Mdks+/b9Q0wbm+vx7rwwplMqOHyJ8hsG0QbmuIaXeCrNS\nUJiV4vF7dBOv9p9ZNn49XmH1K/74448AgOuvvx4ff/wxrr/+etc/QrytPVSNtYdr8ODo7rhvZH6i\nwyFx0j87BS9NKMTeylas+h+VmCeJtWTJEgDA0aNHUV1dDaWy81feZBgmrKQo2kVvvNtjGVFYx4/1\nMZ5tVLeOQ+Tc535c1y3NbwXDVLEAE/pmtW2f+8DdWpDpakT2z0rBiK6BLxYGSh4ypUKPioneew8l\nb2Phe9jkL3p0LFYldRsCx2MYziFx3kSunpL2/Th/cj6PdLHAtQan9+FkvR/kRiEReiSq3g1652Mn\n9c92Vb0Md2rCDd3TI7rYy3j9730BMZT3H5/HePQAOpYVYDyef1qA92aGVIhuaRJ0TRW7Lqo45coD\nz9UMdW6hVMh39dp6X1zwfup8HhPSBVbvfafGuMI1n2E81ox1j9XOtr+HY11cI6zEy/0DK9b17knn\n9uW5RizbdQGT+mdjBa3XddWZO6wr5g3rir8duIhtpQ2JDodcxWQyGR588EHk5eVh1apVaGringif\naNH8XvVuBmVKhTGdX/vLHgqM7h6bUQ2Bhk31VAReisbXM/eeo8Zj2huQQ/Lk6JMhDXgVPNCQulv6\nZOIGtzk93r1T/oZr+uP+Ugbb5g2mx9M5LNN9m84EYViXVPy6MNuj6AVnfD6eF8M4hq35kpcicvVy\nSgR8V6KY49a7NjhHjht7Knw+3lu3NAl6BTgvgim57nzu0WzyRvtd6P1qhNKrCgTu0fI1bNmJa408\n3/vxHY+Qzwu6l3x0fugVsUfnpyHDrQfd/UKIxWaHgMfDgOwUn3NWoymsy16MnysVhDgdqlHhd1tL\nMLJbKtZMGURDza5SL07oh9ImHR7eXoquqWJcF8YHJiGRYhgGjY2N0Ol00Ov10Os7ljtOFoK2Bm1h\npgznfZRldheoHRiN72j3fSgkQvR0myMEeDagFFJBSPNKAuFKSHoppK5hgylCvmsOjHOooa/CI+7c\nG9CKEHroBmanoLRJ1+Hv6RIhftU3CykiflBDlbyLOfgreBJuUuYk5PHQL6s9+XD2XHAVDOmXKXMl\nOoxH4uX8v714Atfp5Rpq6ON2Xw8Z1S0NGRJhUEUuBvpJAJzEfB5MQSz+PH1QLjIUMqg4huxy9caF\n+5L0yZC6hstxJaWhcL+/9zywaF9g8dfbF94wzvDj686RHI3poYCQz+BorTrgUhsKiRBje2dgb2Ur\n0tvOu2ty5UjjKGsfLWElXqdPn3atx3XhwgXXzwzDYMOGDdGOkXRCh2tUKNp4Al1SxfjP3dcGPbyB\nXHkkAj7+c/cQ/Po/R7Hg01PYOneEzwUuCYmlRx55BN9++y2mTZuG22+/HdOmTUt0SJxyU0T4dVYK\nWKPFlXjdNTgP+6paXevOeBcouqF7OhRSIfZVRX8IpXuDbnxBJliWxYl6jSvJcW+ciiOojDY4R44z\njY5GaaDkZVS3NNcQsoluizA7E5g0scCjsISLW1uvt0KKiwHWOPKWkyKC2mRFrY85Ps6KjYGak86r\n7nyGgY1lMbxrKnoH0VsXCFeCNmWgZxETIZ+HX/XNglTIx9G6jsUUhnZpH9Lpvs1QmsnOEue+HuPr\nYkCgXqlQTeiXBYstcArM8xrq5+S9fIDzHt690aF2gBVmpeBckx4mmz3oJCvYBaS9EyPv+Y6x6icZ\n3iW1w7DHYHDFMzQvNaik2Rfn0OMUYcc1Dr1fZ4ZxzMH7dWG2x5DcWAsr8dq6dWu04yBXkKO1ahRt\nOoFsmRBbZg9DTsqVs24OCU+2TIT1s4Zi6kc/4+4Nx/D53BFRaWgQEqzRo0dj9OjRUKvV+OabbyCX\nB1/mOBHSfVx1lYsFHgt+Au1XndMlwphc4BrRNa3D1WWGYXBNrtzn8KJIetgG5qS4Eq/eCgmqlAbk\nhvj94ZzHZbTa0Vjlu0Ic4Ggwj+yWhpFhzP8Z1S0NPXRmHGxb4ysU0wbmuobvMYwjkKwAwz+9b3Hv\nHeufnYIGHffz5OJMEguzZGjUmTmLbrjvO9jeqyyZ0GfJ+XjytS5bMJxVBm/urfBY2yqaSQvXUDuu\nvwXbhvJ+rMDHuljRWrgbaE86gxly6gvXvoO5MBvoc2Zol1R8G2Cxd+cW4pl0AWHO8crPz+f8R65u\nx+rUuGfjcWRKhdgyZ7jHOijk6tYvS4b/z959xzdVr38A/5wkTdI0bdPSBZQyyih7iAhchoKIIktW\nW0Dkp+K+Dhyg94pcNveKW7mi1z0AAfWigoJ4ZQjIKpsCnZTundFmnt8fadIkTdKTNslJyvN+vXjR\nJCfnPDk5Sc5zvt/v8/0mbSDq9SbM+CoDVysCt6sXaTvOnz+P6dOnQ6/X45dffsHEiRMxc+ZM7Nu3\nj+/QPNY/Xu7ygoWvrmZ3jQp1emLVKybMo7mPHDVXRKBdQzW4MIez57t6xOCO7u4rsYVLRC7HO7W0\n257tuKgQoQAdW/jbJhQ0trBwiYRB42TGFrbTc3iamDpSSEMwKsl1i4pdV0OO+07EYTiKoOEN4tod\njkvLkjcuPAztGIEJye0gFQmdFmrxxhCvBD9Nr+JYDMPZ+9fSpKk13HVD9RZnBYQcN8fXXLL+3+Ok\nzTqQW4WZm09DIQ3Bt+mDWvzDRNquvnFybEsbiHqDCVO+OOV03htCvOmf//wn1q1bh5CQELzxxhv4\n8MMPsX37dmzatInv0DwmYBhrVxrLCaCrQgkDE8IxNECn7piaEttkUmGuQkOELZpQ2VFg1AWzJGCN\nJ4AD4sPtxpz9pXMUEsIlSBvUofm1tfA80t3zmm/xarxTITW33PWMCbN2yXO16pSYMKTEhKGriyIb\nLTG+WzQmdo9pfkGYu6I5IxIIOFX9bM24u0HtwzGmS5TdZOItZVtkwjHJdTesvlOkeXJvV/ODecLT\nPdHYGurbxKe9XIIQN+NN+SpRQYkX8Yqt54qRtvUMOoZL8N3cQS3q70tuDP0TwvHDvYMRJhZi2pen\nsPlMEd8hkTbMZDIhJSUFJSUlqKurQ9++fSGXyyHwYgEIf7KM43CcE8jxHCJWJuZU5c9bBnWI4JxM\niQQCnxfmcrX+1m7W8fnuTuxaons7GZIafj+7R8ta3aLVWnbF1JpZViISYHrvOMSGia1JhdTFhMVC\nAYM+cXKvtjqECAVNWkhdubVrdIuSf3cJe49obmOXBQyDGJl33lfbbojNVTG0b710Pbm3OyNsKnO2\ntPpqay563JIYyfkzMSJJYTe+0ZvdLFvDu5N5kBsOy7J443A+1u7PwagkBT6e0dftPCqEAEC3KBl+\nvm8IHvr+Ap78KROH8qux6vbudOwQrxOJzD9zBw4cwIgRIwAAer0eanXTynTBQNIwbkPXMPic60mM\nZaC9r8YzpMTJUV0dPN2HPZ1E2pm7e8a2avJflxUBPYytYahYy+PguJyzJMnVpLP9E8IhNZm8lmB0\njQpFqVrXbBdVriQigUetPY6JvKwhobStDNk/IRxxcjEO5beiwI1Xx5J5tjLH/WGbZFnYzpvXuB3P\n4pKFCNBeLkHPGM+LbHWMkHqtNxVfVdkp8SItptIZ8Nzuy9hxoRQz+8bhjbtSvNJsTW4M7WRibEkd\ngFcP5uHNw3k4kFeN5eOSMS0llqapIF4zYsQIpKWlobi4GBs3bkR+fj5WrFiBSZMm8R1ai1hKtVvK\npQ9MCMepotpmv3sjpSEY1jES8Q2TrN7dM5a3rjb+4NgiaCEVCRAiEGBwx0h4kq4kRkhRodHbdVHz\n1u+d4/uQIJfgbInKac8RZ13kzBNptyL14nAc9I+Xezg5LuPV1rqOEVLM6MN/TxrLXu4aFQqpSODz\ncezNzQ9nq7kWHcbmPmdHS1yYGH9JUlgTR2dJljcwDIMRNvOwJUfLECO7cS66UuJFWuRimQoPfncB\nWZUaLB3dBc+M7Ewny8RjIoEAS8d0xcQe7bB4VyYe+v4CNh2PwOKRnTG+WzQdU6TVHnroIYwfPx5y\nuRzx8fHIz89HamoqJkyYwHdoLWI597WcZydGSu1O0N19ZGyX45I0cB0v4003d4xEpBdaNVzN4yVg\nGExJiYVCEepRC11ytAxdFKFenY/S1ZrCJSKnE8mO7RLldHzb0A4RyCxX+7TrlBDxnocAACAASURB\nVDfG1f0lSRG0VY4bE5aGsWsM02zSxXWSZ/vt2L+LXEvJm5/rcLsFB0S8nwp/2BpoM32BP/SPl+NS\nGX89HijxIh5hWRZfnSnGS3uuIFwiwra0gRjlwRcDIc4Mbh+BvQuH4qszRXjtjzzM/eYseraTYf7A\n9pjeOw4JPrryRm4MycnJ1r+TkpKQlJTEYzStY+nuZXLRwjE8MRI5VXWtqjhowXW8jDe1bCLWplzt\nn9bwZtIFeH5i3M5Ftz3H5NvjODikbK6W8OQl8HFS7y1RoSKEioToG8dtGopYmdgrr7c1Y+CazlvF\nIKThGG7NfHsW5mRcy0tlxJaw7I8e7cLQo13zk3D7CiVehLOcqjq88PNl/J5bhVFJCmyc2juov0hJ\nYBEKGNw7qAPS+idgx4VSfHKqEMv2ZWHZviwMbh+Oid3bYUJyO/SN9+6AbEKCibXFy8XjcokI/f18\nBTkQ+aqbVFvkja9Td6u4vVs7lNd5PtdYIBEJBLirp/9bgD3hmEA7e086REgxuD1rLeDSGr1iZGgn\nC0HsDdRN0Bso8SLN0htN2HisAK8ezIVIwGDdHT1w36AOXr/6RwhgrkyV2j8Bqf0TkFmuxu4r5dh9\npQLrD+Ri3YFcKKQiDE+MxMgkBUYmKdA3zrOxB4QEM7rowE0w7CdLwZPAKG3fOiI338ERUpFXWmBv\nRJ4cxk3GeDXcHtMlCkW1Wuv93irhHyIUBNUFjkD5RqBPAnHJaGKx/UIJ/nUwF3nV9bi7ZwzWTOgR\nVB80Etx6xYShV0wYnhrRGSUqLX7PrcLh/Gr8ca0Gu6+aZ6WPkAgxPFGBEUmR+EuSAv3i5dYCBIS0\nNW3xGsPkXrHNL9QCAxPCERrABZ86RUpxsUwNvr+ubA8px7nfLFX7XF3cMjZkjXTxyzsck6fWJOXR\noeaWqBiZ2KPqkhOS20GtM7Z8wwHmlsRIHC2o8VpFzNYKjChIQNEbTfghswyvHsrDlQoN+sfL8fXs\n/hif3I7v0MgNLF4uwZx+CZjTLwEAUKTU4o/8avO/a9X4JcuciMnFQtzS0CL2lyQFBrUPD4qr34Rw\n0RYLzoh9NEYkmeO8SnzpHStHp0ipVwpXtIblkBILBU3mfhuYEI4YWYjLohjGhsSAEi/f8GS32i56\ne7d2LW5lDJeIOE0iHSwCpSKmRdvZs6TVSlRafHG6CJ+eKkSxSodeMTJ8dE9f3N0zpk3+2JPg1j5c\ngpl94zGzr7n6V7FSi8PXqnEovxqHr9Xg1/9lAwASIySY0SceM/vGoXcst4HRhAQKhVSEWq1/rz7f\n2jUaNfUGv27zRsV30mXLWeuKUMC4nYg7UiJChESEAfH03eoNllaZQe3DkRghbXHhCuraGbjonbnB\nqXQG/HK1At9dLMWvWZXQm1jc1jUKr97ZE+O7taOrWCRoJIRLcE+feNzTUIbZ0jXx2wulePdoPt46\nko/+8XL835AOuKd3PC8V20hwUyqVeP7556FSqaDX67F06VIMHjzYp9sc161pT4MQgQA92vmuNSc6\nNMTaTYm0fVyqGroiFDC4nXrDWCmk5s9NSyYHBsyfvTt7xEDWkonOGfPzK+v0Ldo2V7ckRkLvYroG\n0jxKvG5A12vr8VtOJX7NqsSv2ZWoN5jQPlyMB27qiIWDO6BbgHfPIIQL266JZWodvr9Yis9PF2Hx\nrstYvi8Laf0T8H9DOgZ8dyQSOD7++GMMHz4cCxcuRHZ2Np599ll8++23fo9jSopvxkSRG1NjhxY6\nmW4tiUjgdA42T7Qo6YI5gR7TJcrl5OHe0tHHk0a3dZR43QDqDUYcvlaD37Ir8VtOJTLLzZNGtg8X\nY+6ABEzvHYdhiZE0Doa0WbFhYjw4NBEP3NQRRwtq8PHJQnx8shCbjl/HmC5RWHRTR0zo3o4+A8St\nhQsXQiw2j3UxGo2QSKjQECEkMDCMuZqnQEi/Y4GMYdngKWRaVqbkO4SgoDeakFGsxOF883iXI9dq\nUGcwQSJkMLyTArd1jca4btHoFSOjsVvkhlWi0uKrM8X45NR1FCl16KKQ4sGbEpE+IKFNDSxua2Jj\n/TNH1TfffINPP/3U7r41a9ZgwIABKCsrw6JFi/DSSy9h2LBhTZ5bV6eDSNS6rqxCoQBGo6lV6/An\nite3fBmv3mjC9rPFEAkYzBrQ3ivrDKb9G0yxAk3j3ZxRCACY2icesgDsQh/s+7clQty0WlLi1QbU\nG4w4WajE4WvmCm8nCmuh0ZsPmp7tZBjbJQrjukVjRJKixU3YhLRVeqMJP14ux6bjBTh+vRZysRDp\n/RPwwNCO6BZF3RADjb8SL1cyMzOxePFivPDCCxg7dqzTZbzxW6VQyFBdrWn1evyF4vUtX8arN5qw\nM7MMIgGDqSlxXllnMO3fYIoVaBrvjgslAIC7esQgNADP8YJ9/7aEu98puqwbhDR6I45dr8Hh/Boc\nvlaNk4W10BpZMAD6xIVh3oD2GN7JPK+RJ3M3EHIjChEKML13HKb3jsOpolpsOl6AT04V4sMT13F7\ncjTmD+yA25OjW1xdirQdV69exVNPPYU33ngDKSkpfIdDiFdQx5e2wd0k1iRwUOIVBFQ6A45dr7V2\nHcwoUkJvYiFggAHx4bj/po4Y0UmB4Z0irRV1CCGeG9w+Ahun9MHy27T45FQhPssoxJ6sc4gNC0Fq\nQ6GOlNgwvsMkPNmwYQN0Oh1Wr14NAJDL5di4cSPPURHiHcHT/4k4Q4lXcKDEKwCptAb8eb0Gf+TX\n4FB+NU4XK2EwsRAywKD2EXhkWCJGdlJgWGIkjUUhxAfi5RIsGd0Vi0d2xr7sSnx5pggb/7yGd45e\nQ68YGab0isXUlDgaJ3mDoSSLtEWtKSdPAgf9FgUHOmsPAEqtAX8WmJOsPxoSLSNrvnoxuH04Hr+l\nE0YmKXBzx4iAmmyRkLYuRCjAxB4xmNgjBqVqHX7ILMN/L5Ziw6E8vHooD50iJLitm7lYzaikKJq0\nkhAStKjBKzjdkhiJCo1v5+4i3kNnCTyoqtPjaEENjlwzj9E6XayEiQVCBAwGdwjHkyOSMDJJgaEd\nImmSV0ICRFyYGPcP6Yj7h3REiUqL3VcqsC+7EtsvlOKzjCIwAFJiw3BzxwgM7RiJfnFy9Ggng0RE\nY8MIIYFLwABChkH/BDnfoZAW6Bghpbm1ggglXj5mYlnkVNXhTLESRwtqcPhaDS6WqQEAYiGDIe0j\n8PSIzuZEq2MEVR0kJAjEyyW4b3AH3De4A3RGE45fr8Xha9X4s6AG3140J2KAudW6e3QoureToVOk\nFEmRoUiKlKJTpBQdwiUIlwipewghhFcMw2Bab+9UMySEuOe3xMtkMmH58uXIzMyEWCzGqlWr0Llz\nZ+vj+/btw7vvvguRSISZM2dizpw5/gqt1Uwsi6o6PUrVOuRV1yO7sg7ZVRpcLtfgXKkKKp0RACAL\nEWBYYiSm947D8MRIDO4QDmkr53ohhPBLLBRgZJICI5MUAMzfB1cqNLhQqsLFMjUulKpxqUyNvVmV\nqDfYzw0iZACFNASKUBEUUhEipSGQi4UICxEiTNzwL8Thfyd/y0KEkIkFEAmodY0QQggJVH5LvPbu\n3QudToctW7YgIyMD69atsw5U1uv1WLt2LbZt24bQ0FCkp6dj3LhxiImJ8XocT/54CXuzKiAUMBAy\nDAQNM32bbwNCAWO+zTAQCRgIBbDeNj8G6Iws6vRG1BlMqNUaUKHRw2Cy7x0dHSpCcrQMqf0SMCBB\njn7xcvSODaMTI0LaOAHDoFdMGHrFhOEem/tZlkWZRo9rNfW4VlOPwlotquv1qK43WP+vqtOjoKYe\nar0Rap0RKp2xyXeLO1KRAGEhQsglQkRKRIiUihDh8H+kRISIhv8jpSKEhgghFjKQiASQCAUQCwWQ\nisz/C5jGcR+WimcsWLAsYGRZGEws9Ebz/wYTC73JBIORhd5kc5/RBIOJRc+YMMSF0fQWhBBCblx+\nS7xOnDiB0aNHAwAGDRqEc+fOWR/LyspCUlISIiMjAQA33XQTjh07hrvuusvrcYzpEgWxkIGJBYwm\nFiaWhZE1X6U2mlgYWRZGU8PthhML83Lm5XUsC4lQgAi5GKEhQsjFQsSGiRErEyM2LARJilB0iwpF\nVCiVdSeENGIYBnFhYsSFiXFThwjOz9MZTVDrzImYJSGz+9vJfbVaA5RaA2q0BmRValCjNaCm3mCd\nWJ0PozsrsD19EG/bJ4QQQvjmt8RLpVJBLm8cuCkUCmEwGCASiaBSqRAe3jjLc1hYGFQqVZN1uJsJ\nmqtHbw3Ho61eCyGEEOKcN36rvLkef6F4fYvi9Z1gihWgeH3Nl/H6rd+bXC6HWq223jaZTBCJRE4f\nU6vVdokYIYQQQgghhAQzvyVeQ4YMwf79+wEAGRkZ6Nmzp/Wx5ORk5OXlobq6GjqdDsePH8fgwYP9\nFRohhBBCCCGE+BTDsqxf5syzVDW8fPkyWJbFmjVrcOHCBWg0GqSmplqrGrIsi5kzZ2LevHn+CIsQ\nQgghhBBCfM5videNQqlU4vnnn4dKpYJer8fSpUvbVOvdnj17sHv3bmzYsIHvUFqluekNgt3p06fx\n6quv4vPPP+c7FK/Q6/V46aWXcP36deh0Ojz66KMYP34832G1mtFoxN///nfk5OSAYRj84x//sOsN\nEOwqKiowY8YMfPTRR0hOTuY7nKAQqN9Nzj6D7du3x8MPP4wuXboAANLT0zFp0iRs3boVmzdvhkgk\nwqOPPorbbruNl5jvuece69jyxMREPPLII1i6dCkYhkGPHj3wyiuvQCAQBES8O3bswLfffgsA0Gq1\nuHjxIrZs2RKQ+9f29yUvL4/zPq2vr8fzzz+PiooKhIWFYf369YiOjvZbrBcvXsTKlSshFAohFoux\nfv16xMTEYNWqVTh58iTCwsIAAO+99x5CQkL8HqtjvBcuXOD8/vOxbx3jfeaZZ1BeXg4AuH79OgYO\nHIjXX389IPavs++v7t2783PsssSr3nzzTfbjjz9mWZZls7Ky2OnTp/MbkBetXLmSnThxIvv000/z\nHUqr/fzzz+ySJUtYlmXZU6dOsY888gjPEXnPpk2b2MmTJ7OzZ8/mOxSv2bZtG7tq1SqWZVm2qqqK\nHTt2LL8BecmePXvYpUuXsizLskeOHGlTx6FOp2Mfe+wx9o477mCvXr3KdzhBI1C/m5x9Brdu3cr+\n5z//sVuutLSUnTx5MqvVatna2lrr3/5WX1/PTps2ze6+hx9+mD1y5AjLsiz78ssvs7/88kvAxGtr\n+fLl7ObNmwNy/zr+vniyTz/66CP2rbfeYlmWZX/44Qd25cqVfo113rx57IULF1iWZdmvv/6aXbNm\nDcuyLJuWlsZWVFTYPdffsTqL15P3PxDitaiurmanTp3KlpSUsCwbGPvX2fcXX8cuTSrlZQsXLkRa\nWhoA89VsiUTCc0TeM2TIECxfvpzvMLzC3fQGwS4pKQlvv/0232F41Z133omnnnoKgHk+LKGwbUw8\nfvvtt2PlypUAgMLCQkREcC8zH+jWr1+PtLQ0xMXF8R1KUAnU7yZnn8Fz587hf//7H+bNm4eXXnoJ\nKpUKZ86cweDBgyEWixEeHo6kpCRcunTJ7/FeunQJdXV1uP/++7FgwQJkZGTg/PnzGDZsGABgzJgx\n+OOPPwImXouzZ8/i6tWrSE1NDcj96/j74sk+tT22x4wZg8OHD/s11tdeew29e/cG0Hh+ZjKZkJeX\nh2XLliEtLQ3btm0DAL/H6ixeT97/QIjX4u2338b8+fMRFxcXMPvX2fcXX8eu38rJt0XffPMNPv30\nU7v71qxZgwEDBqCsrAzPP/88XnrpJZ6iazlXr2vSpEk4evQoT1F5l7vpDYLdxIkTUVBQwHcYXmXp\noqBSqfDkk0/i6aef5jki7xGJRFiyZAn27NmDt956i+9wvGLHjh2Ijo7G6NGjsWnTJr7DCSqB+t3k\n7DOo0+kwe/Zs9OvXDxs3bsS7776LlJQUTtPD+JpUKsUDDzyA2bNnIzc3F4sWLQLLsmAYxhqXUqnk\nPJ2Nv7z//vt4/PHHAQADBgwIuP3r+PviyT61vd+yrD9jtVwEOnnyJL744gt8+eWX0Gg0mD9/Pv7v\n//4PRqMRCxYsQL9+/fweq7N4PXn/AyFewNy9/PDhw3jxxRcBIGD2r7Pvr/Xr1/Ny7Ab/WSaPZs+e\njdmzZze5PzMzE4sXL8YLL7xgzaaDiavX1Za4m96ABKaioiI8/vjjmDt3LqZMmcJ3OF61fv16PPfc\nc5gzZw5+/PFHyGQyvkNqle3bt4NhGBw+fBgXL17EkiVLsHHjRsTGxvIdWsAL5O8mx89gbW2ttZV2\nwoQJWLlyJYYOHRoQ08N07doVnTt3BsMw6Nq1KxQKBc6fP28XV0REREBNZ1NbW4ucnBwMHz4cgHmf\nBur+tRAIGjtONbdPbe+3LOtvP/30EzZu3IhNmzYhOjramgyEhoYCAIYPH45Lly4FRKyevP+BEC8A\n7N69G5MnT7b2SgkNDQ2Y/ev4/fWvf/3L+pg/j13qauhlV69exVNPPYUNGzZg7NixfIdDXHA3vQEJ\nPOXl5bj//vvx/PPPY9asWXyH4zXfffcd3n//fQDmHyiGYexOZILVl19+iS+++AKff/45evfujfXr\n11PSxVGgfjc5+ww+8MADOHPmDADg8OHD6Nu3LwYMGIATJ05Aq9VCqVQiKyuLl9ewbds2rFu3DgBQ\nUlIClUqFv/zlL9ZeG/v378fQoUMDJl4AOHbsGEaMGGG9Hcj716JPnz6c9+mQIUPw+++/W5e96aab\n/Brr999/b/1e6tSpEwAgNzcX6enpMBqN0Ov1OHnyJPr27ct7rIBn738gxGuJc8yYMdbbgbJ/nX1/\n8XXsBsZltDZkw4YN0Ol0WL16NQDz1cuNGzfyHBVxNGHCBBw6dAhpaWnW6Q1I4Pr3v/+N2tpavPfe\ne3jvvfcAAB988AGkUinPkbXOHXfcgRdffBHz5s2DwWDASy+9FPSvibROoH43OfsMLl26FGvWrEFI\nSAhiYmKwcuVKyOVy3HvvvZg7dy5YlsUzzzzDy1jnWbNm4cUXX0R6ejoYhsGaNWsQFRWFl19+Ga+9\n9hq6deuGiRMnQigUBkS8AJCTk4PExETr7eXLl2PlypUBuX8tlixZwnmfpqenY8mSJUhPT0dISIhf\nqyMbjUasXr0a7du3x1//+lcAwM0334wnn3wS06ZNw5w5cxASEoJp06ahR48eSExM5C1WC0/efz73\nra2cnBxrUguY5+kNhP3r7Pvrb3/7G1atWuX3Y5fKyRNCCCGEEEKIjwV/nxZCCCGEEEIICXCUeBFC\nCCGEEEKIj1HiRQghhBBCCCE+RokXIYQQQgghhPgYJV6EEEIIIYQQ4mOUeBFCCCGEEEKIj1HiRQgh\nhBBCCCE+RokXIYQQQgghhPgYJV6EEEIIIYQQ4mOUeBFCCCGEEEKIj1HiRQghhBBCCCE+RokXIYQQ\nQgghhPgYJV6EBJlFixbh6tWrOHr0KCZPnsx3OIQQQogd+p0ixDkR3wEQQjzzwQcfAAAqKip4joQQ\nQghpin6nCHGOEi9C/GTfvn3YuHEj9Ho9pFIplixZgoMHD+LKlSsoLy9HRUUFUlJSsHr1asjlcnz1\n1VfYvHkzQkJCIJFIsGLFCnTv3h3jxo3Dm2++abdupVKJf/zjH7h06RIYhsHo0aOxePFiiEQi9O/f\nHw899BAOHTqE0tJSLFiwAAsXLuRnJxBCCAlY9DtFiG9RV0NC/CA3Nxevv/46Nm3ahO+++w4rV67E\nX//6V2g0Gpw+fRpvvfUWdu3aBZFIhHfffRdGoxFr1qzBhx9+iO3bt2POnDk4ceKEy/WvWrUKCoUC\nO3fuxPbt25GZmYmPPvoIAKDT6RAVFYXNmzfjrbfewoYNG6DVav310gkhhAQB+p0ixPco8SLEDyxX\n8RYuXIhp06bhueeeA8MwyM/Px5133omYmBgIBALMmjULBw8ehFAoxJ133om0tDSsWLEC4eHhmDVr\nlsv179+/H/PnzwfDMBCLxUhLS8P+/futj48fPx4A0LdvX+h0Omg0Gp+/ZkIIIcGDfqcI8T3qakiI\nH5hMJowYMQJvvPGG9b6ioiJs2bIFOp3ObjmBwHw95NVXX8Xly5fxxx9/4IMPPsC2bduwceNGl+t3\nvG0wGKy3JRIJAIBhGAAAy7LeeWGEEELaBPqdIsT3qMWLED8YPnw4Dh06hKysLADA77//jqlTp0Kr\n1eLXX3+FUqmEyWTC1q1bcdttt6GyshJjx46FQqHAwoUL8fTTTyMzM9Pl+keNGoUvv/wSLMtCp9Nh\n69atGDlypL9eHiGEkCBHv1OE+B61eBHiBz169MCKFSuwePFisCwLkUiEjRs34vDhw4iJicGiRYtQ\nVVWFm2++GY888gikUikeffRRLFy4EFKpFEKhEKtWrXK5/r///e9YtWoVpkyZAr1ej9GjR+ORRx7x\n4yskhBASzOh3ihDfY1hqyyWEN2+//TaqqqqwbNkyvkMhhBBCmqDfKUK8h7oaEkIIIYQQQoiPUYsX\nIYQQQgghhPgYtXgRQgghhBBCiI9R4kUIIYQQQgghPhZUVQ3LypR8h0AIIYRHsbHhfIfQLG/8Vsnl\nEqhUWi9E4x8Ur29RvL4TTLECFK+veSNed79T1OJFCCGEBBiRSMh3CB6heH2L4vWdYIoVoHh9zdfx\nUuJFCCGEEEIIIT5GiRchhBBCCCGE+FhQjfEi7hlMJhy5VoPj12txrbYeAoZBfJgYwxIjMbxTJMRC\nyrMJIYQQQlxhWRa/51ahV0wY2odL+A6HtDGUeLUBOqMJHxwvwDtHrqGiTg8AaBcaAgDW25ESER4d\nloiHb+6EMHFw9bclhBBCCPEHg4lFZZ0ex6/XYEpKHN/hkDaGEq8gd6VCjf/bcR6XKzQY3y0a8wa2\nx61doiCXmN9atc6I/blV+PpMEdYdyMWnGYX4YFpfDEuM5DlyQgghhJDAwvIdAGnTqO9ZEDuUV4VJ\nn51CZZ0eX87qj6/nDMDkXrHWpAsAwsRC3NUzBp/N6o8f5g+GRCjA9K8y8OmpQh4jJ4QQQnyHZVlc\nrdDAaKLTaEJI4KDEK0idKVZi7jdnES8XY9eCIZjQvV2zzxmWGIk9C2/CrV2j8PzPl/Hxyet+iJQQ\nQgjxr0KlFmdKlDhfquI7FBK0GL4DIG0QJV5BqFipxfxtZ9FOFoIdcwehsyKU83MjpSH4ZEY/TOze\nDkt+uYKt54p9GCkhhBDif4aGli6t0cRzJCTYsA2NpAzlXcQHfJZ4nT59Gvfeey8AIC8vD+np6Zg7\ndy5eeeUVmEz2X4QmkwnLli1Damoq7r33XuTl5fkqrKBnYlk8/N8LUOqM+HxWf8SFiT1eh1gowIfT\n+2JUkgLP7srE6WKlDyIlhBBCCAkuLI3yIj7kk8Trgw8+wN///ndotVoAwNq1a/H000/jq6++Asuy\n+PXXX+2W37t3L3Q6HbZs2YJnn30W69at80VYbcJHJ67j8LUarL29O/rGyVu8HolIgA+m90FsmBgL\nd5xDZUP1Q0IIIYQQQoj3+STxSkpKwttvv229ff78eQwbNgwAMGbMGPzxxx92y584cQKjR48GAAwa\nNAjnzp3zRVhBL7e6Dqt+z8b4btFI7Z/Q6vW1k4nx8Yx+KFXpsPSXy16IkBBCCCEk+FFPQ+ILPkm8\nJk6cCJGosbIey7JgGjrLhoWFQam079qmUqkglze23giFQhgMBl+EFtRW/JYFANhwZ0/r/mytgQnh\neG5UF3x3sQzfXyz1yjoJIYQQQoIRjfEivuSX4hoCQeNm1Go1IiIi7B6Xy+VQq9XW2yaTyS5xI8Cx\n6zX4IbMcT9yShA4RUq+u+6/DO2Fw+3As+eUydTkkhNzQmhtz/Mknn+Duu+/Gvffei3vvvRfZ2dk8\nRUoI8QUa4UV8yS+JV58+fXD06FEAwP79+zF06FC7x4cMGYL9+/cDADIyMtCzZ09/hBU0WJbFP37L\nQlyYGI8MS/T6+kUCAV6/qxdq6g1Y/TudRBBCblzNjTk+d+4c1q9fj88//xyff/45unXrxlOkxB1q\nrCCEBCK/JF5LlizB22+/jdTUVOj1ekycOBEA8MILL6CwsBATJkyAWCxGWloa1q5dixdffNEfYQWN\n33Iq8WdBLZ4f1QVysW9aAvvEyfHg0ER8kVGEk4W1PtkGIYQEuubGHJ8/fx6bNm1Ceno63n//fT5C\nJIT4kKmhryFD6TvxAYZl2aBpVS0ruzHLnk/94hTya+rx5yO3QCz0Xa6s1Bow8oM/0TFcgl0Lhnht\nHBkhhHhLbGy4T9f/t7/9DXfccQfGjh0LALj11luxd+9ea/f3d955B3PnzoVcLscTTzyB9PR03Hbb\nbXbrqKvTQSQStioOoVAAYxDNQRVo8eZWanAkvxpdokIxvHNUk8cDLd7mULy+4xirSmvADxdLESYW\nYkqfeB4jcy6Y9i1wY8YbEuL6+58GUgW4I9eqcaSgBqtv7+7TpAsAwiUi/G1MVzz5UyZ2ZpZhakqc\nT7dHCCGBxt2YY5Zlcd999yE83Jz8jR07FhcuXGiSeKlU2lbHoVDIUF2tafV6/CXQ4q2trYNGo0Wt\niHEaV6DF2xyK13ccY1VpDdBotIBeGJCvIZj2LXBjxuvuAqFfuhqSlnvzcD7ahYZg3sD2ftne7H4J\n6B0bhlX/y4YuiK5QEEKIN7gbc6xSqTB58mSo1WqwLIujR4+iX79+fIVKCPEBSzcw6vNDfIFavAJY\nZrkav2ZXYsnoLpC5abb0JqGAwbJbuyH9m7P47FQhHhzq/WIehBASqCZMmIBDhw4hLS0NLMtizZo1\n2LlzJzQaDVJTU/HMM89gwYIFEIvFGDFihLVLIiGkbQieATgkGFHiFcA+OF4AiZDBfYM7+HW747pF\nY3RnBTYcysOcfgmIkNJhQgi5MQgEAqxYscLuvuTkZOvf06dPx/Tp0/0d7fd7zQAAIABJREFUFiHE\nz2iYO/EF6moYoKrq9PjmXAlm9o1HjEzs120zDINltyWjok6Pd47m+3XbhBBCCPGteoMRJV4Yi9gW\nsTSTF/EhSrwC1JdnilBnMGERT139BiaEY0afOPz7WAGKlPTlTAgJTiqVCpcuXYJGEzyDuwnxtd9z\nqnAov5rvMAJS4xgvavIi3kd9yAKQiWXx6alCjOwUib5xct7ieHFMV+y8VIZXD+Viw529eIuDEEJa\nYvfu3fj3v/8No9GIO++8EwzD4LHHHuM7LOIHNB2Ke2q9ke8QAhaN8SK+RC1eAej33CrkVdf7fWyX\no86KUNw7qD2+Ol2E7Eq6WkwICS6ffPIJtm7dCoVCgcceewx79+7lOyRCSJCg3J34AiVeAeizU4Vo\nFxqCST1j+Q4Fz4zsDIlIgPUHcvkOhRBCPCIUCiEWi8EwDBiGQWhoKN8hEUICHDV4EV+ixCvAlKi0\n2H2lHKn9EyAR8f/2xMslWDQ0Ed9eLMXZEiXf4RBCCGc33XQTFi9ejJKSEixbtgz9+/fnOyTiZ3QS\nTTzFNvQ1pAYv4gs0xivAfHWmGEYWWDDIPxMmc/H4LZ3wyclCrN2fg69mD+A7HEII4WTx4sXYv38/\n+vTpg+TkZNx22218h0QICXCUrBNf4r9JhVgZTSy+yCjE6M4KdIuW8R2OlUIagr8O74S9WZU4co2q\nIBFCgsN3332HyspKxMTEoKamBt999x3fIRE/o1YL4ilLcQ0a40V8gVPiVVZW5us4CIDfcytxrVaL\nBYP4LarhzINDExEXJsaa33OszfCEEBLIsrKykJWVhatXr2Lnzp04cOAA3yERP6NfK0JIIOHU1fDJ\nJ59EdHQ0Zs2ahbFjx0IgoIYyX/j0VBFiZCG4q2cM36E0IQsRYvFfOmPpL1ewL7sS45Pb8R0SIYS4\n9eyzz1r/ZlkWDz/8MI/REBJ4WJal0vsOGpN12i/E+zglXl9//TWuXr2K7du3Y+PGjRgxYgRmzZqF\nTp06cd7Qjh078O233wIAtFotLl68iEOHDiEiIgKAuezvN998g+joaADAP/7xD3Tr1s3T1xO0ipVa\n/HK1HI8O6wSxMDAT2/kD2+O9o9ew+vcc3NYtGgL6siaEBDCdTmf9u6ysDAUFBTxGQwgJBtSrh/gS\n5+Ia8fHx6NSpE86fP4/Lly9j9erV6N69O5577jlOz58xYwZmzJgBwJxUzZw505p0AcC5c+ewfv16\n9OvXz8OX0DZ8eaYIRhaYH0BFNRyJhQIsGd0Fj/9wCd9fLMU9feL5DokQQlyyTJrMsiykUikeeOAB\nvkMifkKXBUlr0bVl4gucEq+nnnoKV65cwdSpU/Gvf/0L8fHmE25LIuWJs2fP4urVq3jllVfs7j9/\n/jw2bdqEsrIy3HrrrTdUlxCjicUXp4swpksUukUFTlENZ2b0ice7Da1ed/WMgVQk5DskQghxat++\nfXyHQAgJUpR3EV/glHjNmTMHgwYNQlhYGEpLS633f/311x5v8P3338fjjz/e5P67774bc+fOhVwu\nxxNPPIHffvvthin9uy+7EtdrtVgxLpnvUJolFDBYMb47Zm0+jU3Hr+PJ4Ul8h0QIIXZSU1NdjlvZ\nvHmz2+eaTCYsX74cmZmZEIvFWLVqFTp37txkuZdffhmRkZGce30QEohYUILhiHoaEl/ilHidPHkS\nR48exeLFi7Fq1Sr069cPDz30ECQSiUcbq62tRU5ODoYPH253P8uyuO+++xAeHg4AGDt2LC5cuHDD\nJF6fZRQiNiwEd/YIvKIazozpEoWJ3dvhjT/ykNY/AXFhYr5DIoQQq9dee63Fz927dy90Oh22bNmC\njIwMrFu3Dhs3brRbZvPmzbh8+TJuvvnm1oZKCAkwlHcRX+KUeP3222/YsWMHAOCtt95CWloaHnro\nIY83duzYMYwYMaLJ/SqVCpMnT8ZPP/0EmUyGo0ePYubMmR6vPxhdr63HnqwK/HV4EkICtKiGM8vH\nJWP0h8ewfn8ONtzVi+9wCCHEqmPHjgCAvLw87N69G3q9HgBQWlqKFStWuH3uiRMnMHr0aADAoEGD\ncO7cObvHT548idOnTyM1NRXZ2dlO1yGXSyBqZTdsoVAAhSKwu57bCrR4a8FAVlWPcLnEaVyBFm9z\nvB2vTGa+cK6IlEEg8H6bVzDtX8dYVQwDmUyC8DBxQL6GYNq3AMXriFPixTAMdDodxGIx9Hp9iyu+\n5OTkIDEx0Xp7586d0Gg0SE1NxTPPPIMFCxZALBZjxIgRGDt2bIu2EWy+OlMMEwvMGxi4RTWcSY6W\n4YEhHfHBiQL835CO6Bcv5zskQgix8+yzz2LChAk4efIk4uLioNFomn2OSqWCXN74fSYUCmEwGCAS\niVBaWop3330X77zzDnbt2uVmHdpWx65QyFBd3Xy8gSLQ4q2tqYdGo0WtEE7jCrR4m+PteDUa8zFa\nXaPxSYXiYNq/jrHW1JqPHTXYgHwNwbRvgRsz3tjYcJePcUq80tLSMGXKFPTs2RPZ2dl48MEHWxSI\n4/OmTJli/Xv69OmYPn16i9YbrAwmE748XYRbu0ahiyKU73A89uyozth6rhiv7LuKbWkDaS4QQkhA\nkclkePjhh5Gbm4u1a9di7ty5zT5HLpdDrVZbb5tMJohE5p/K3bt3o6qqCg899BDKyspQX1+Pbt26\ntajQFCGBgKVBXoT4FafEa/bs2Rg/fjyuXbuGTp06WefaIq3za1YlCpVarLq9O9+htIhCGoIXRnfF\ni3uu4L+XyjCtdxzfIRFCiBXDMCgrK4NarYZGo+HU4jVkyBD89ttvmDRpEjIyMtCzZ0/rYwsWLMCC\nBQsAmOemzM7OpqSLkDaGimsQX+KUeF28eBFbtmyBVtvYfWLt2rU+C+pG8VlGIeLCxJjYvR3fobTY\nwsEdsPlsEf629ypu7RqFSGkI3yERQggA4IknnsCePXswbdo03H777Zg2bVqzz5kwYQIOHTqEtLQ0\nsCyLNWvW2HWLJ4S0bZa8ixoCiS9wSryWLl2K+fPnIyEhwdfx3DDyq+uwN6sSz4zsHFRFNRwJBQxe\nvbMXJn56Aqt/z8E/J/Zs/kmEEOIHNTU1SEtLg0AgwPjx4zk9RyAQNCnAkZzcdKoPaukipG2y1DGg\n0RPEFzglXjExMZg9e7avY7mhfH66CAwD3DsouIpqODMwIRyLbkrE+8cLMKVXLEZ3ieI7JEIIweHD\nh/Hmm29i3LhxmDVrFjp16sR3SG1GmVqHCIkIElHwXjgkAEszeRHiV5y+MTt27IhNmzbhwIEDOHjw\nIA4ePOjruNo0rcFcVOOO5HboGCHlOxyveHFsV3SLCsVTP12CUmvgOxxCCMHLL7+M7du3IyUlBStW\nrMDChQv5DqlNMLEsDuRV4VB+Nd+huMRHa8XZEiXKNTr/bzgA1dTrUac38h1Gi9AQr8BkYlmcL1XB\nYDLxHUqrcEq89Ho9cnJy8NNPP+HHH3/Ejz/+6Ou42rQfL5ehXKPHwiEd+A7Fa2QhQrw9OQWFSi1e\n2nOF73AIIQQAcObMGRw8eBAVFRVO55EMJtlVGpSpA+fEvpYustm5UqHB/twqvsMICLsulWHXlXK+\nw2iRYB3jlVtdh28vlMDURquD5FbVIbNcjUtlwVOa3hlOXQ3Xrl2LnJwc5Ofno1evXoiLo+p1rfHJ\nyUJ0Vkhxa9e2VR3y5o6ReHpEZ7z2Rx5Gd4nCnH40JpAQwp9JkyYhJSUFs2fPxurVq/kOp9UyipQA\ngBl94nmOxKylc3qSwEFvYVPBuk/Ol6jAAtAZTZC2cgL3QGRseGOCPbHklHh98cUX2LNnD2pqanDP\nPfcgLy8Py5Yt83VsbdLFMhWOFNTg5Vu7+WTSQr49N6ozDl+rxgs/X8aghHD0jAnjOyRCyA3qyy+/\nRFQUjTklhHDHwlJcI7jO0YQCBjACBiPL8eye8IFTV8Mff/wRH3/8McLDw3Hffffh9OnTvo6rzfr0\nVCHEQgbpA9pma5BIIMC/p/aBLESIedvOooL6uxNCeEJJl28E+QVnQjgJrrQLEDYkioYg+YBmVWpQ\nWFvv8fOC7X1xxCnxYlkWDMNYs3+xWOzToNoqlc6AredKMCUlFjGytrsP24dL8NnMfihWarFwx3lo\nDcE9EJIQQkjLaPTGoO8aFMhMLIszxUrOv7MZRbX4OUjHXvlNkB6ulpY6U5DEf7pYiSMFNXyH4Xec\nEq/Jkydj3rx5yM/Px6JFi3D77bf7Oq42aceFUqh0Riwc3JHvUHxuaMdIvD25N44W1GDxrkwaC0AI\n4cXhw4exZcsWXLp0CVqtlu9wfOrnK+U4HECVBk0si91XynH8ei3fobRZ12u1uFqpwblSFafls6vq\noLapNki/zE1Zi2twaFq5UqGGShcYRWYsp1l0vmXvRGEt8qvr+A7DilMv0Pnz52PEiBG4fPkyunbt\nipSUFF/H1eawLItPThaid2wYhnWM4Dscv5jeOw5ZlRqsP5CL5OhQLP5LF75DIoTcQF577TUUFxcj\nKysLYrEYmzZtwmuvvcZ3WD6j1hvtTqp9xXJlvbnTO0tLV5GybSe8gH9OdktUWggFjF2PGUtuoDdS\nzxJv4fpWVtXpcbZEhco6A25JjPRtUBwES0uXv+VV1yGvug5JilC+QwHAscXrnXfewa5du5CVlYW9\ne/finXfe8XVcbc6JwlqcK1Vh4eAOQTdgszUWj+yMWX3jse5ALj7PKOQ7HELIDeTEiRP45z//CZlM\nhnvuuQcFBQV8h0RIix3Kr25Srl7QcDpBjRz+p2/IdHQeDKfQG03YcaEEVyvsS6LnVNVhRytLwXO9\nIBKs2soxzqnFKyYmBoD5is6FCxdgCvLJy/jwyalChImFmN03MMoA+wvDMHhjUi9U1+vx3O7LCJeI\nML03TUdACPE9o9EIrVYLhmFgNBohEHC61ki8hGlmGLxl/Lhvtu09dXojCpVaJEfLXC7D1zmhsCHz\n8sY4OmctajciluO7aWnl9OQQtozFy6rUoHu7xuPpfENXUb2RhUTUsqOX78REozciu7IO/eLl/AYS\n4DglXmlpaXa3H3zwQZ8E01ZV1unx/cVSpA1oD7nkxqvxKRYK8OH0vkjfegaP7bwIuViI25Pb8R0W\nIaSNu++++zBjxgxUVlZi9uzZWLhwId8htQlcT/DcncDuuVqBeoMRU1IC/0LckYIaVNXpES8XQy4W\nod5gRJ3ehKjQEL5Ds2ppNzPb9/JQw/jAQJknji+WfeKTiwKWFkrnd7c4gWbZxk8bXwnYnwU1qKzT\nIzFSAoXU+58N68vy4G0JxPFunLKAnJwc699lZWUoLGxZl7F77rkHcrk5E05MTMTatWutj+3btw/v\nvvsuRCIRZs6ciTlz5rRoG4Fo85liaI0sFg7uwHcovJGFCPHFrP6456sM3P/teWyZMwAjkhR8h0UI\nacPuuusujBw5Enl5eUhMTER0dPBOWu/vE4jqej0kQgFCQ1o+Eat1sL+Tx5QBUpCAC4OxoVpcQ2ef\nPVcroTeZ7BKUADy/85lrNfWIChVBLg7sC8l1eiM0eiPaediCx/WttCZoHqzb0grseLxY5nVtyWGU\nVanB6WJlC57pWplaBxPLIl4u4fwcS9LI5bPgr++zQBz3xulTYztZskQiwZIlSzzekFarBcuy+Pzz\nz5s8ptfrsXbtWmzbtg2hoaFIT0/HuHHjrF0cg5mJZfFpRiGGJUagb9yN3fwaLhFhc+oATPsyA/O2\nncW3cwdhYEI432ERQtqYxYsXu7xavWHDBrfPNZlMWL58OTIzMyEWi7Fq1Sp07tzZ+vjPP/+MTZs2\ngWEYTJkyBffdd59XY3fF3+cP+7IrIWAY6hqOxnFUpoZ3QW8z3OJaTT0EDJDgwQmqL/hz6Pix6zUQ\nCRhMDfDWyl+zK6EzmjxuweOaUFk+kwIPdr6rRa3HWAsyhdwq+4p9OheFVnKq6nCqqBZ394yFROS+\n2/WBPPNYQs/2Hff94K/vM2MAXhHhlHg5S5Y8denSJdTV1eH++++HwWDA4sWLMWjQIABAVlYWkpKS\nEBlprgpz00034dixY7jrrrtavV2+7c+tQk5VHZ4f1YXvUAJCjEyMb1IHYMoXp5C25Qy+nzcIPWPC\n+A6LENKGOHaPZxiG8xXWvXv3QqfTYcuWLcjIyMC6deuwceNGAOYxYxs2bMD27dshk8kwadIkTJky\nxS8taXycP7jq9hR4pzK+ZUninZ0TH7tunodoGk9JiKkFrS7eYHCTIARK9y5XCYi3tOZ1OnbDtSRk\nLWmhcXzO0YIazOgjbbJcQY15suLqer1HLVme8vW739zYUVsBcija4ZR4TZ06FWq1GhKJxDoPimVQ\n7K+//sppQ1KpFA888ABmz56N3NxcLFq0CLt374ZIJIJKpUJ4eGPLR1hYGFQqbnNSBLpPThWiXWgI\npvSK5TuUgNEhQopv0gZiypenMHvLaeycNzhgynwSQoLfsGHDAAAVFRXYuHEjcnNz0aNHDzzyyCPN\nPvfEiRMYPXo0AGDQoEE4d+6c9TGhUIiffvoJIpEIFRUVMJlMEIubdmOSyyUQiVreRc+8LQEUisbB\n93qjCTKZ+WTJ9n5bzT3uCXfr0hmaxuIYr+1yDNN0Pd6M1RkVw0BWWY+wMKnTbTiL15XIcA10AgHk\n4VIo5BK72C1/R0aG+vQ1CYUCp+tXMQxkMgnkcgmn7VrWYREZGQppiBDlah2n+E0mttnljCYWAkEt\nZDJuMfkK1/fD8ViQ1xshU+sREe782LFQgoFMVo/wZpazJdYZIZNJIBXZbzNcLoWp3oDwiFAoZO7H\nRznGGypTwujwfSOTSyF2aNVqp6iHGgykYVIomjnnasmxHC5XQycQICIiFIqwxu9FZ581I4fjqMn6\ntUbIVHqP9ne93ujxdjz5bmgJTonX4MGDMX36dAwePBiZmZn4z3/+g1WrVnm0oa5du6Jz585gGAZd\nu3aFQqFAWVkZ2rdvD7lcDrVabV1WrVbbJWLBqqCmHruvlOPxWzo126x7o+kWLcPW1IGY/mUGZm85\ng10LhiA6gAYqE0KC39NPP41JkyZh1qxZOHHiBF544QW8//77bp+jUqmsY5EBc7JlMBggEpl/LkUi\nEX755ResWLECY8eORWho0xMYlar181YpFDJUVzeWnNYZTdBozOu13F+h0eH33Crc1SMGoSHCJo87\nulimQjuZGHFhzY95cbcuZ7E4xmu7HONkPc3F2lq1tfXQaLRQCZxvw1m8rmjUWmg0OlRVawCt3i52\ny99VNn/74jUpFDK79ZtYFgYTixq1DhqNFmoXr7PJa9HYH5vVNRpIRUL890JJ431u1mMwNX3vnS1j\nMrHQaLSortagul6P49drMbZLFEKE3j8XYlkWB/Kq0StGZteSw/X9cDwWamvroNFooQxh3D63uqbh\nGBNyf881eiM0Gi2MQoHdczRqLTRaAyqr1WB07j+fTeJV1aPeoaR9SYUK4Q7F3FQqLTQaLWpr61DN\nuG8KasmxrFZroanTo6ZGA5G+cQyns88al+PIkVJp3t9KpQjV1dzGF9YbjB5vx5PvBldiY13nMJw+\nAVlZWRg8eDAAoFevXigqKoJYLHZ6pc+Vbdu2Yd26dQCAkpISqFQqxMaaW4GSk5ORl5eH6upq6HQ6\nHD9+3Lq9YPbJKXMRkoWDO/IcSWDqGyfHF7P743ptPe7fcc7n3QIIITee9PR0pKSkYN68edBomv8x\ndbwQaDKZrEmXxR133IH9+/dDr9fju+++83rMtqrr9bhYpnLaZSar0jy2o1yj57Sui2VqHMyran7B\nZgRi9x1fEth0A3PXxc6fThUp8UNmmTWe1nQ19KSSnrOXvz+3Cr/nVlpvO67ufIkKtVoDKuu4Haee\nUmqNKNforFUZuTCaWGtpd0fci2tYysl73vWtSVVDN91Zm+OYdJnX5y4G3x7DXNbekhCs+45lOb+G\nQPyu4pR4hYeH44033sC+ffvwz3/+Ex06eF6db9asWVAqlUhPT8czzzyDNWvWYNeuXdiyZQtCQkKw\ndOlSPPDAA0hLS8PMmTMRHx/c5UzrDUZ8cboQE7vHoFNk0762xOyWxEi8MSkFf1yrwUt7rvAdDiGk\nDenWrRv++9//oqSkBPv27YNCoUBOTo5dpV5HQ4YMwf79+wEAGRkZ6Nmzp/UxlUqF+fPnQ6fTQSAQ\nIDQ01Odzg+3LrsTFMrXdyfHRghrU1PvmJNabbE8y6/RGl8vpjCbkVte5fLwlLCey3hhcbztXlu3q\n+BzLlNewv04U1rZ6XZ68DGfLlmt0qLBJ/j3ZK/uyK3ChtHVDS3TNzC3r+D6ZWBbfXyrFj5fLmnme\n++1attqSpLdpVcPG2LzB2TgoSzJWqNQ2mcAZcP8Z5bRNT8q8t2I7V3xQxfFKhRo5Vd79DnKFU1vd\nhg0b8NVXX+HAgQPo1asXFi9e7PGGxGJxk2pSQ4YMsf49btw4jBs3zuP1BqrvLpSiss6AB2+i1q7m\nzOobj4tlKrx95BpGdY6iKlqEEK/Izs5GdnY2vvnmG+t9y5YtA8Mw+Oyzz5w+Z8KECTh06BDS0tLA\nsizWrFmDnTt3QqPRIDU1FVOmTMG8efMgEonQq1cvTJ061S+vxfZK+PXaelRq9GjXzFgQW3wXPNh1\npRzju0Uj0sn8PmeKlcivqUe4WOhx6e/meCPxKlSauyqZWPuiCLbvSXU9v+XxW1PV0LMWr+aX9WSX\nV9cbUF1vQJ9WVH22lPsHgJp6fZNjzMQCQpv9o9K6TzA4z1Nnne+L2/KA67ntLOswumnyMppYFCq1\nnMYfuYupUKlFoVJrN4FzfnUdjhfW4rau0V6bn65UrQPLsk7jdbePS1RaRIeGuO2Wml1Vh0HtI5qN\ngeuheLbEnPx3jfJ9vQFOiZdEIkFkZCTUajW6du2K2traoJ4PxddYlsWHJ66jV4wMozrTXFVcLB3d\nFYev1WDxrkwMTAj3y8FPCGnbWlKRVyAQYMWKFXb3JScnW/9OTU1Fampqq2PzlGPiZHsCx7Jss1dr\nvdlDzt3EyO6W+zW7skl5arZhrBIA1Om5dzevrNNzGhfsqgd7vd6IY9drMDAhHGKO444cuxnavr4D\nLejCeaZYCYVU5LfiUs5allgWYF2cpBtNLAQMUFCrhVpnREpsGKfjiOvx4S7JsCioqUdUaAjCxK6L\n1di+L9drtU0SL3M8jS+yuUSJS/x6owmGhpa2luW89tsQoPmuhmdKlMipqkNCuzA0d+Q7S2zcxVnW\n0GJZozV4lHhdKFXByLLoH984psmybUu35l6JUU3js3n9BpMJ5Wo9EsIl0BpMOJRfjbgwMUZ1joLR\nxKJco/NpFUZ/4/Rts2zZMhQWFuKPP/6AWq1u0TxeN5LjhbU4U6LC/UM6+mbm8zYoRCjA+1P7QMgw\nePj7CzTeixDSaq+//jpGjRpl9y+YlKp11r+dtdxY7smvqcepIvddzgJxPhvA/BosV7YNHGLMKKrF\nvuxK/C+nEr/nVkLlYiJmS6LqqoUmv7oO12rqcfRaDfdYWdbufLm1u/RqpQbHvdBVkAujicWlcrXT\nx1zto+8vleLwtRocu16DC2XmpK3JBQBnxyXH/dJc6xnLsvjzeg3257pPam3XY+kWav+4/e1mT8vc\nTPxtsTOzzNpK4tF5nouVMhy6Gmp05pY6PYeE1Vny6C5OyyOednW8VK7GlYZui5bujZfL1dhhU6yl\nOZfLNfjjWjVKVFrr91St1vy5Pl2sxKH86qDoWs0Vp8QrPz8fTz31FMRiMcaNGwel0rt9K9ua/5y4\njnCJELP7Bfc4NX/rFCnFm3f3QkaxEiv/l813OISQIPe///0P+/btw8GDB63/goVGZ7QrhNHk5NHm\n+jWXEzHbE6oSlZbzeAa9z+dC8mz57Ko6VDechFVo9DhTrML12nrsvFTm9KTRVauK5d4yjY7z2BbH\nVXnSilhvMLqM5fj1GhTW1nNfmRPNnfy7a8Vx9x4UO1TodFzU2bHHuThFM49bWrK0zRyDtusROU28\nHObMaqaNyrI01+65nlxet6xRb2KtxzHQGDeXz7K3LucbbMbGWQ+fVlxMsKyixOaCkSu2u9by/qp1\nxiavTdlwYUVnbBpYYW09ausNdq/D3XYCBafEy2g0orKyEgzDQKVS+XwwcTArUWmx81IZ0vsnQC7m\nVu6SNJrUMxYPDOmI948VYF92Bd/hEEKCWJ8+faxzTwYTvdGE0w4tWI4tVrbn2VxOxGzP5w7lV+NU\nUS2npOqci+5pXHBZzvak+GqFBr9cLcepolocucatQp3eZMK5EhX0JhM0ThIoVy19tndzrVTIOqQv\nXLvUAcBPl8tx2MVryq+px5EC7i1vLeHuvWjNuaneyQmx7XuaXdVYxMExhuaOD8v7Imw2qXTvXIn9\nMWy7Oqctdhzjc7Y+T2RXNl78sHR3tbRqtRqHroa2750X8i6P2G7H2bad7XvHz9uRghrsza5w22rd\n3Ge0xAtTf3iKUwb1zDPPID09HefOnUNqaiqeeOIJX8cVtD7PKILexOL+IVRUo6VeGdcNKTEyPP1T\nJqp8VH6WENL29ejRA6NGjcL48eMxbtw4jB8/nu+QOClT65Dn0CLVtMXLvXKNzu6k0uQkueBydd3Z\nibU32YZQqzVApTMip6rOWtCiOUYT6/ZqvavcMqMFXfxMrP0JoadX00s5tAS0FAPz1AOufjNdhcrC\ns+5ljos6fa7NXcVK16/Z9qS4zMm+sSZezZyp2obgLJ78Gtetie4+Apbubs3xqMXLZnt2CWDD/1cq\nNTjfyiqPXNlecGgsZ2+/Q9Q6Iy676KLqKbXOiB0XSlCs1NrtB4GLbXNVxnE6DcDc8pzZ8Hryqutw\nKL/a6xVVm8OpSaaoqAg///wzKisrERUVReOWXNAZTfg0oxDjukWjWzR/s7UHO6lIiHcm98adn53E\ni3uu4N9T+/AdEiEkCP3000/49ddfERHRfPWrQOLsN9YxcbLteuMTe58ZAAAgAElEQVS4eKlah4N5\nVegXJ0fPmDDz852c0+iNJiDEddEC8/Oajunho1CHy+eztiduTR93djLXtOsZN47P47ofnLWqePui\nIsOYpx4A0KSAiTkGN092lju5aimE4z5w39XQUqCjOQfyqprEbVl3vcEElmU5nXtyKv5hmzw7efGW\n167WGzkVcWkurrzqOpwpVqF3bBhiw5ovXJFZrkbPdjJU1untiko4e2mu5iLTGk1wrBPpGKbtWHrL\nQ2dLVHZTIB0tqEZ1vQGJkVLIQoQoVetQVadHr4bvFXfrd2Q55vNq6tE3rvH5jePLGpd1fK0MA5Sp\nPfvMmBzGZALAsYJalGl0iJeLoWpoXaz3oKiPN3Bq8dq6dSsAIDo6mpIuN366XI4SlY5KyHvBgIRw\nLB7ZGTsulOK/l0r5DocQEoQ6dOiA0NBQiMVi679g4OxEVWOw74Lk7gSuvqHLXY3NFXtnXe64NGbZ\nngxlVWpwIK8aP18tt1tGZzThx4sldmNWAG7dllqbxNVoDdYTSJNtpceG/42suSpaiUprLUDCpZqe\nUmtoMlGr+TzOdhvcgnc259BvOZVOlmy55s7M3BVXcdwdp4pqrSelzXG2K203VabROR3zU1Ovh7K5\nsu42f58vdd3qYl/h0+0qmyxfomoam+0qLF3/6vRGHLlW3aLCX6eLldCbTDhTorTbr7bvmWMCe7Sg\nBofyq6HWGV0mVwBwpMB599Xfc6twpcJ9S5XBxOJssRKH8qrsYjlq0+3V0uJtufBzMK+qxS1yrIsb\nudXmFkkneZLd+1mu8azF+LuLpU0+e5ZWfhPb+Jo4FjX1Gk4tXjqdDtOnT0fXrl2t47sc5+QiwIcn\nCtBFIcW4blRq3xueGpGEPVkVeOHny7glMbJNlRMlhPhecXExJkyYgE6dOgEwX5nevHkzz1G1TEaR\n66JWjsUCnLUAOTvxdtW1xzbZsHQBK1XrnCYQRhOLcrUOSq0RF0vVGJHk2RQq3hj8Xt9wYlqnN0Eh\nbfq4bVU8hTQEHcLd/5ZY5jTq0U6GvjbzS10qV6O9zXO5xm45sWyJPwtqIBQwGG8zF5Kz1qjmLoqf\ncTPh7NVK+8l0c6rMFR+dcdyy82qbze+YX7PdJ55XKtTWqoGAefoAl1x0NZSFCKHRGxEf5vqCy7Hr\nteibZH/O5ux9vVqpQaFSi6iqOqetPe7YdunjOp7Q0i3VcpHjnt5x1vts32u1mwT5crkGnSKlkIrM\nrdqOBXX0RhZXGt572xL8ti1Alu8SLlGXN9Plz3LcNhlr1lAcgwXr9jMVHybmVLgDaDwObJc3mEzW\nVjmWZa0TYAv83KDkNvF677338Nhjj+G5555DSUkJ4uOpSp8rJwtr8WdBLVaMS/b7m9hWhQgFeGdy\nCsZ/fALP7rqMz2f1oxZXQghnr7/+Ot8htAiX77mqOgPqGlrBHJe2nHTYjfFyckKzP7cKwzpGIjHS\nPlux6yrWsA5X3cWuVmoQIRE1eZ55+25fAoDmK9bZr8/9Ci+UquwSI2dOFdVCIXV/cdRS4t3ZyX6m\nzXgXV+E4dosTMi1v2StwUu1w15VyJ0s6pzWYcKFM5fKkmGWddxHjmiA4bfFysWyN1oAwsRDhkuav\n+Z91LIgBmxN3hsHpYiVUWgP+0jnKrtut7bbD/r+9Mw+Torz2/7eWrt57enr2hYGZgQHZd0WuTAQH\nlMXBFVDBaHJFbxIjN3GJUSSKCCF6kxAwEr2PXEwCyg8SQRLRaEQRUUFkGRbZBWGGGWaY6emeXuv3\nR3fVVFdXdVfP0t3A+3meeaa7q7rq1FtLv+c95/2esOMlr+slrRcn3Cu+QFCxYG+L148gz8MYdl7q\nW71RjlcixcmljmqzJzTnqao8K+694pZEvVo8fhhYCs1t/pjf8wSC2Hy4XjH1FAA+P9Me2RIOPc/M\noVkSiRSuDfn1EAjyEdL9/mBQdSCnzRcZtTvd3IaeSiMkaHfalTaVyD2k9P0Lbn/Es1KIfCe7Wxkz\nwPbZZ58BAEaPHo233noLo0ePFv8Ikfxhxylk6FncM6Qg1aZcVvTJMuOXlaXYcrQBf9lzLtXmEAiE\nSwi/349NmzZhw4YN2LBhA1555ZVUm6QJLf0At199pFtwHKQpdWqdQ7XaTnKUZLqBUJqhsOic04Nt\nCRYSbtMo5Q4AZ1UEN4SCr8UZBk2d4FipW9F1qiKXuySddrXIzoYDkenxHR0wVJv036Zgv9xuly+A\nzYfPY+d3zTje6I6ZImc3aC+YG61MGPlBrdODg+eVr6n9dU68d1RdrdjtC6gKkNAU8PHJJmw6dB5A\nKO21ttULXyAo1hgDgBONbmw/1YRAsP3syM+TvNh1ndODjYfO41z4+pKufeB8KPKmZ0PdZa0RFzWk\nyudC6tw5pyduROmMxAHfefoi/nagDu8fa0ho4CIWwmmsbfVGPFuEK1ce2ZRfT+8fVY9g/m1/Ld45\nfD7iGE83R9/LcseK5/mIwY+gSispzzNUn7sXWt7+vWQHS2I6XpG5zV2QD3CZcvSCC+8cqsd9wwth\n0TCSQ0iM/xxZjLEldjz1ryM4lWT1GQKBcOnys5/9DACwa9cunD59Gk1N2iTKU02i/QC19aUdGaU6\nOICykyf/uT/e6FYdWb/Y5o+YJ1Pb6sX+OiecXr9i50euXqd1FNvtC6hKrgty4wxFYYPCvA45sdLW\npOZQoGKmzXUkipWIctsuifJivD6YdOmxCy6campDmz8YVYdL+bsd799JnXtvIIhtp5o0K1LK2Xqi\nEZ+cbMRuhWLgnkBorp5ciVP+3hMI4qzTA7cvoBg9kbdjoVWP+vA1We/yodUbwElZP6O+1RtzMES6\nxVqnB+travH1uRbUu7xRhX+VIokUqLjnV+5fJXIdbTvZiI9OxE7tjHct83xIEVBAHnVVKuUQtQ3J\na6UBF56XrsRHzIerc3ojIpXR3408AKXj8fjbo3Lx5hd2JzEdL+koDUnxUmfFjm/BMRR+OLI41aZc\nltAUhd9N7gsKwMPvHOyw5CiBQLiyMJlMmDt3LvLy8rB48WLU12tP0Uolif7aqq0vHSFWi3jIf9qD\nPC+q4wl8dbZZtWte1+qNmiN0qL4VW440oNEdLcctj9ZoeZrzPB9z/ojYwQ7/PyqzJ54NRy644AwL\nkUTLpUfvLfpVNN5AEIEgj5o6Z4Rz0uj2xa0d5A1Ep23F+9mTLm/xBjT/Th6sb9WsFrfxYF2EKIhc\n4VJeL0sNNdGH1nBn/JhCcW+5cEu7De2vI9LI+Pb5QtKWkDs+UkEHigJqW6PPTYQ/EAchknP0ggtb\nTzRG7a9BQSBCS/daGtVLlNpWLxrizL9Sne8pWf71ua6TufcrRan4yCEAqU0H61tjOndy5/cfh6Of\n9V9+14ymttB9/tXZ5oiUSoGaJEj5xwzP7N+/HzNnzgTP8zhy5Ij4+lKeoNzV1Do9WLvvHGYNLkBu\njAmchM5RYjdi4YTeeOQfh/CnL09j7qgeqTaJQCCkORRF4fz582htbYXL5YLLFbtDni4kOtDJqKQB\nNrh84m+2eqoZhbMtHgR5HkcvuGHhGLR4ox2mjmS9KHWUBFMptKf7xNv2oXqXYsezIsuMww2tYgdb\neoixNilPmzrW6EZdqxcTe2dHRH8utvnF1Dal7caye9Oh8+jtMEU5pR+diJ+KuenQeWSZItP/Eml9\nCtqjcfLoTizk0aUgH9k5jqWcKEU+f0uApqiEB1alCps0RYk2BCQOlfQ8yR2hIB8p6FCnoHIo34ZT\nVt8rlslCR19AKVUxXoQ2GaidO+n5kBdcjyXsocQxyb2gNjdQ2J0vmFgclueBC20++AJB7K11aroW\n2xTStQ/Wt+LaigR23AFiOl5vv/129+79MuBPX56BP8jjodEk2tXdzBqcj82H67Hw38dwfalDrE9D\nIBAISvz4xz/Ge++9h+rqatxwww2orq6O+51gMIgFCxbg0KFD4DgOCxcuRM+ePcXlmzZtwqpVq8Aw\nDCoqKrBgwQJR7beriOd2CU6LFoT5RpkxahFt/7Y9BbNexTftSJ5BrPpNFBVKr9r1nXo0TUAt2mHU\nRba71o5/LDl56SJfMNpZlUr0n1PppAt0pmCyPEKRSKohRYXEDrqbIM9HlCRQU0LUilbnXs05kzpe\np5rcYt2oY41uFNoMyDVzYlRN3CfaI6UUlAcxmj3+iPatT6AGWzo4VVo4paK8KaQo83z0c0leViIe\nUidUqaB7olFeOf8OR2MtXOzahAKpEsKL6XgVFZF6VLFo8fjx+ldnMLVvDsoyScHk7oaiKLx4UwUq\nX/sCP950EO/MHqaoQkQgEAgAMGrUKIwaNQrNzc3YsmULLBZ5SdFo3n//fXi9Xqxduxa7d+/G4sWL\n8fLLLwMA2tra8Nvf/hYbN26E0WjEf//3f+PDDz/EhAkTutTueP0BlqYiog9aOihqBXu1FLfVug85\nSvNZhO0Iu4212QtuX6jTq7KSKA0dfq/UmVMi5HhFHrggHpLIcR6KI0yipV6YlCMNLvTOUu5LbDwQ\nu56l1GmhKQoXFaKWXQ2PjkVCY21PC2rS+NJrWZ6u+Em4QLM8oiU9RRSlfs6kc4IOycRDeADNbX7F\nSPGlgtqghXAPd/UUD9WIl8ZU3ujtSSKSGiNxjMqDttHlSzjdOxGS1mv1+Xx49NFHcdddd+H222/H\nv/71r4jlr7/+OqZMmYLZs2dj9uzZOHbsWLJM6zCvf/Udmj0B/OSaklSbcsWQZ9Fj6aQK7D7Xgt9t\nP5VqcwgEQhqyf/9+TJ8+HT6fD1u2bMGkSZNw22234YMPPoj73Z07d+K6664DAAwdOhT79u0Tl3Ec\nhzVr1sBoNAIIqSbq9V1fXzDej7485asjCKnxMesjdRK/gqBHkOfR4PJqik79+/gF7PquWbXTJ9Qv\nE1MNNXYOleaXCCSS4KSL47Umepr21LaguU258x5LiRGInuuktS06w5dnmrE7BREdpTlggLYIRous\nU97i8WN/eO4SBSrC8dJLBnal16A8agYA7x9rwI7TFyPUBy8HxNIU6HyxcynKdQVjz8frLuQplN0d\nCEuaBN/bb78Nu92OpUuXoqmpCdOnT48YJdy3bx+WLFmCgQMHJsukTuH0+LF8xylcX5qJIfnWVJtz\nRTGtXy5u7V+PF7edwLACKyaUZ6XaJAKBkEb8+te/xuLFi6HT6fDb3/4Wr776Knr27Ikf/vCHGD9+\nfMzvOp3OiMgYwzDw+/1gWRY0TSM7OxsAsHr1arhcLowdOzZqGxaLHiyrLd1FCarNB7rOBZNJm1Nn\ntuhhSjCzrLJfLt6JE0WRYrMZYTJF5iGWOow4fiHUCaZpKsreM22BqM+sNiN2nGrSfGwA0MJDcX17\nhhGmix6YjTp4aRomswEmT6hIqi3DCFOjcidYb2Th8UTaZjbq0BDgcc7p02xbkc0Qs6Nt4RhQCc6D\nMVr0ivtXal8pJnP7NdDg5+EGnVAbd4TmoPJ5AUL2DizOjJjX091Y9QyoGGp1+xrb4EJ0Owpt+63b\njwDfvtzA0mDCDq/JrIepTXnbFoseJm/7Ddjds/3jXQtasBtZNCmI36jBGjkYzQGYOhALUrLXwNKA\nLvKhRXMsWCMnrrvrvPZnYEaGKeE2MXIMAiyDoy2R97yOpWE2dl8WW9IcrxtvvBGTJk0CEApNM0zk\nj9L+/fuxcuVKnD9/Ht/73vcwd+7cZJnWIf608wwuuP14/LrSVJtyRfKbSRX4psGFH/69Bm/fNRSD\niPNLIBDCBINB9OvXD7W1tXC73RgwYAAAaJqLZbFY0NrankoUDAbBsmzE+6VLl+L48eNYtmyZohCG\nU4OEdyxaPH4EgzxcLm3bqQsE4PIklubU2uJGZrgIq5YUqaaLrih7gmZW/Mxk0muyt+miW/NxxcPZ\n0gaXywNd+Pj3Sbb7fo163UeXyxNlr8vlwZmGxBTNLlI8XAoqdQKMn4UrwfSzjXu+U/w8XvvW+v1w\nhZ28dNCQMZn0cLW2ddm51gIbYGPeB4dVbFFrW5pjxDa9wFKqx9KiU1/WHWi912IxMteErSrqkkps\n++Z8/JVUULLXR9NRcyiPuzw4XtexCOqB042Jt4mPURQAOt7gQrGh4wNnAJCTo94nTVqqodlshsVi\ngdPpxMMPP4xHHnkkYvmUKVOwYMECrFq1Cjt37sSHH36YLNMS5mKbDyt2fItJvbMwvNCWanOuSCx6\nFn++fRDsBhYz3tyjWcaWQCBc/giO0scff4wxY8YACKW7Sx0qNYYPH46tW7cCAHbv3o2KikiJq/nz\n58Pj8WDFihViymFXw8nmrsoV7uQ0J+h0AaG0LJamNKfz7FGQku7I5PTO1IySI+w9GRlJhdbo0fR4\n+03mnB+t81pi0beLBavU5tB0F1rnK2plTA+7+DrWfaJW2LuzGNju66In+9zIURKu6Qw7v4uu/RYP\ntRTm1m6+b5OqTHD27FnMmTMH1dXVmDZtmvg5z/O499574XA4wHEcKisrUVNTk0zTEuL3n53CRY8f\nj13XK9WmXNHkW/VYN3MIOIbGrX/djc9VimsSCIQrizFjxmDmzJn4wx/+gNmzZ+PUqVN46KGHMHny\n5LjfraqqAsdxmDlzJl544QX84he/wMaNG7F27Vrs378f69atw+HDh3Hvvfdi9uzZeO+997rcfr2s\nw9WvGxRcmbDjpS4zH4mSE6HU0TXGSbHcfVZ5RFvubGpB6Dsmw8HJs+hRmhnpaDsvUTGFXnblAQP5\nXJfOQne1JxSXrt2fVd8e6Y7lKHTFnEslskzpWaIoVU7b90odXbo9VdGebpXWSGKqYX19Pe6//37M\nnz9fHIEUcDqdmDp1KjZv3gyTyYQdO3bgtttuS5ZpCXGqyY2VX5zGHQPyMCiPpLelmnKHCW/fPRS3\nr/kat/xlN56dUI77hxeRgt8EwhXMAw88gAkTJsBisSAvLw+nTp3CjBkzUFVVFfe7NE3j2Wefjfis\nvLxcfH3w4MEutzceconrq4sz4PYFsac20okxsgzcCrVplKCp0F9XizCwHexsa3UAOYYW102mHDRF\nAcMKbDguEXaQF2JOlFFFGfjiTPIHDCuyTDihUL+rq/2HZHfQ1coOyMk06lRVPtVIVKGys1T2ysTh\ncG2HeHMJO0Jn7vvSTGNUfbpk4IhREqMjqLXAZSOu8cc//hHNzc1YsWIFVqxYAQC444474Ha7MWPG\nDMybNw9z5swBx3EYM2YMKisrk2VaQizaehwUReHJSjK3K10osRux5fsj8OONB/GL945g8+F6vFDV\nh9T5IhCuYKTOUklJCUpKLl31WWk/YHyZA3aDDt5ApONlYOmoNL5Y9b6ocMSrq1GqgzSi0AY9Q+NT\nSb0wIJTa5vEHFZ0ANaSb74z1w4tsqL3Qim8aOtaBVGtbs45RVL1TojvaX45OVnoACKXq51v0OCeb\ni9jVkuGdqfZiYOkoxzaRgYWY2+6AYa3exJzsHhmGTtU1yzJx8AdDqdG97F3veCVB9DLtURvs6e67\nMmmO11NPPYWnnnpKdfn06dMxffr0ZJnTIT77tgnra+ow79oSFNkMqTaHIMFu0OH/bh+IVV99h0Uf\nHUfla1+g+qpcPDiqGEPyrSQCRiAQLimuL8/CO3tDQgvC88th1MFuCI36yp9oNEVFdZwZhTlc0rlK\nah3/cocJRzWMaCsFAZQk1lmaQp4lOm3KpGMwINeSoOPVNc9yHUMj18xpdrzke8006kQpfqkTdn2Z\nA5sOaRMi6IzfdW0PO/bVOePO7zNzDEYVZYClKfzjm/aCtyUZBgXHq+P2KCGULOgIgtPFMTSKbXoc\na3Qj08jC3aLueNkNurhRLx1Na0qBlEdXEp2TNLzAJjpefRwmfNOBCFGJ3YDzLi9s+q7pqutoGhN7\nZ+HoBRey48wbTQQlh7jcYUKLx9+pIuJKDCuw4UiDq8PpxVqcd6XBo66EVJ/ViDcQxKPvHkYPmx4P\nX9Mz1eYQFKApCvcNL8KnD4zG3FE98O6RBkxctQvX/ulz/Prj4zjSwZFNAoFASDZ5Vj2mVORgfJkD\nmQYWvR0mjCrKEJfLHRAK0aPY0rkKOSYOY0vsuKZH6A9QTwXTmiKmNGqu5MxRCDmPGbIOJBNedViB\nDeN6ZWraJ8e0b78z6VI6hkpoQE5wKG8oy8LYEnuEQ6vFwdC6JwunTU1NKrgyoUx97su1JXZY9SyM\nusjtKvUtuzriZdWzEQIVHaHYphfbl+eB/jnKRdDtBhZX5cTPcmFo5XNhDg8ChPZp6PR8IoamRLGS\ncllR7FjXwohCG7LDc7t62o24tX9e1LmLhfQZIafAykHP0uifa+nUYLTUMcky6WDVR9vHUFRCDmNJ\nhrZgRmmmEVW920sIxaulJ18+vsyByRXZMb8zsJtVsonjpZGXP/8Wh+pdeGFiH5g1PhgJqSHHzGHB\n+HLs/q9r8NJNFSiw6PHitpO49k+fY9yrn+OFrcew+2wzeBJrJxAIaYyepWE36EBRFAbnWyN+e+Sj\nsjRFRaW+STOqBuZZkGeJVOZTE7TQ+mxUUiikKOCmPsodG3lnT3AeSzONyNI4f2NoQbuSsNq8m7El\nyp19qbOq01BaQIrQ+bUZWORZ9BFOCkNTKM004uriDOhoCnZDZIfzhrIsTL8qV3x/Y59sDCuwKbZ/\nb0dkJ31KRU7UOj3tRuhk3x3Tw47xMgfMbmBhUBE7kZ6LoQVWjOuVGeFIy53kjkBB3cmoyIp2kpT2\nSVORDrJa/2tEoU10JjmGxq398xTXoylKXE+qGnh9mUM8H2pXf4Hk/hlbYle9zgT655hxY59smHQM\npvbNQVlYnCVWimlPu1FxEKLcYYoo6KxGjxgOjPx26ePoWK2qnhkGUUTHYdApFvemqPZzr0WdMbuD\n0dHBcZwkNnyf51v0oCkKepZWvSeAkGMvv7e6GuJ4aeDAeSd+88kJTO2bjYm9Y3vKhPQhw6DDPUMK\nsf6uofj6R2OwcEJvZJk4/G77KUxctQvDVnyGJ7YcxmffNhEnjEAgXHJIO9pK0R9pxEvpCZcj6ewU\nWPQYEu7ExIskCc6Bmh6GUceIKZFAu9S5fJBd6jxqHYHXMzSm9c1BZYwImZpDObVv+++3jqFU5/rI\nnbIBuRZkyhxDqfIkz4eidkU2AyiKioqW0HTk8Zl0DEozjcqT+GWfSSN8eWYO48scGKFQxqbAqocp\nTmSkwKIXO8HSvr+RZZBt4sQo3tgSOyaUZ6GqPBRZGNxBITGKosRjlDqjlb0yFaNT/SSf5Zg4lGYa\n0S/HLDoqFo5BjwwDri91KJbycRh1yDFxGJwXilxN65uDqvIsMYIkHLdwLq7KsWBsiR13DC4Ax9Bi\nBFatP6BnaTEFkaGpqIEMpeMXzgnH0JJrgMK0vtEOdSxHaEi+FVMk35Fe///RU1u0WB6ZkkfiBITI\nnxoWPYubKrLxvVIHBuRZ1MtdhA9Xy62dqDMyuSIbUypy4qYe69nQ8nKHMWLwQ9WOJMxKIY5XHDz+\nIP5r4wFY9SyWTKyI/wVCWpJv1eOBUcXYcNdQ1Dw8Fsum9MPQAiv+uuccbv7zbox+ZQde3HaiU5Nh\nCQQCIZnYDTpxzlaQ58WIhVL6jVJnUs/SYtpN7yyT2EEK8qGozERJSo8UoSOslJomRKFGFbV3jD2i\nCmHkukrFS+Ol2tFUaH5WlolDscroPk2FnJRou2nJa0oxRQqIdNAA5fpWQ/KtYjvLxTTkrW/hQk6H\n3cDCyrU7IGyMTqPDqIuan8yFI6ACGWFnRjgu5STPdsaU2DE5HEGTblc4L4LYgOBUWvUsbu2fh2yz\ncsday3w7YT8MTYkRoywTB4amIhyGQqs+wmHOt3JiVDDbpMM1xRmiY5Zp1EUdK4/QdXFdr0yUhOXy\ndQwNq57Ff/Rsj0xRMrHwPIteHABQmtszsbz9HtCztDjoIL9O++dYcF0cB0jYui8YjIqq9HaYMCiB\nFDep1DxDyZdFn6/KXplRZSlMOiYiMmgOvxeOzW7QRR3n9ZJBBYdRBzocjb9RFuU2c0zE9SGN1uUo\nyOSrXUtqSoYGloGepcU2zTVzuLV/HnJMnDiAJBwjAHgD2gbXyxzdU5tRStLENS5VFm09hv11rfi/\n2wZGjA4SLl0cRh1mDMrHjEH5aPUG8M7h81i79xyWfHwCv/74BG7sk42HRhfj6uIMIspBIBDSmnyr\nHt+1eMJpRKHOhY6h4QsGIuYhySM2Aga2vfPlDjsQQZ6PGT0ROsjSyFiGgYXL5YE//Jm0BpKQRuiX\ndX7kghs3lGXBxNHY8e1F1KpMyqcjHAb1OWojimz4psGlKp6hZ2m4Vb6v5blvN+hQaDPgZJM7SuBC\n+n1pXbPxZZGOrEUhtU5wXDONOpTLIiB9Zel5wwts6GU3iul3crP7qEQ0AJk6ZPiLg/Kt2FfbEjU3\nR601QnXgtHVoaVAYU2KPGADINXOo7pcLtz8gOqfXlzqgYyjxvWBfoUzQTG5TrOtVep0wdHs7KamA\nApFzFy16Ftf1zESt04vSTCNMOibC4ReEVfppmF/W027oUhl2QShC7jBW9nKgps6Jg/XtBeNj1QTr\nn2NBzXmn6MgLjw0zx+DqYgfW19SK6yq1My2J7AnY9Kz4PKFAYXJFNjYcqAMAXNcrExfcPmToWfz9\nYOgzg67dMSsMP9OAUIpgv2wz2lTC68KpEhzZ68KRwK/PhRRfhWeVVnEUNsEU5I5AHK8Y/P1AHV7+\n/DTuG14Y5c0TLg/MHIM7B+bjzoH5ONXkxhtfn8Wqr77DP76px5B8Cx4a3QM398tJys1IIBAIiSII\nYfB8qNNxqqkNFAV80+ASI1JDC6yaohNFNgPOu3zoL+lEDs6zRsjWV5VniamDwih2gUWPwQU2nL3Q\nGuVcARA7zRfDDkqBRY8xCvNjbLKOX46JQ7nDiLpWL46F62epHYa0vhfH0uAYGoPyrOD5kINYnhly\nQoYV2NDmD0DPMlDSUlQajVcjVm2n8WUOfHDsgmpUTWBovg46U3oAABTSSURBVBWt3oCoeldkM+Db\nix5Fp8kmmzvG0FTEgDBDUaCp0ByzeOIQ0mYU+u25Zi7KOQwtV250mgpFRj891aSqrig4WkIUTe7U\nMnSkk6U2QBBlf3g7hVa9KBajBR3dHiWR598K25Sf1RwzpzrwPrkiJyLyO6LQpjqnycwxsHIsCm2h\nyF+5w4Tvmj1w+wMdKi0wssiGWqdXcW6cvAh7LAQHVHC4xcinPJQG7SUCOJoSrxsePCiKwoBci7ht\nIZI1rMCGBpcXDqMOFVlmlGQYYDOw2HKkHk5vADqGQr5VPaVTuL4UTAXQHv1Xei4JCPeqaspkF0Mc\nLxX2nmvBTzcfxOhiG56b0DvV5hCSQIndiCcry/DItT3x1r5avPLFt3jw7QNY9NFx/OjqHpg5KD8h\ndSECgUDobmhJL9Ju0MGerwPP8yjJMOCTk00IBHjNhUcZmoqaP1Rk00c4XlY9C6uexdXFGSiw6tEv\nxwwKQDDc0ZNGQPpkmaLk7AEozs+RIkiJ9881I8vEodBmwOlmD7yBoGoHtbJXJt472gAgMtVSPvm+\nNDMylSjLpEODq12CfGRRpG2xBBSyTDqcVqmvZDfoMCjPgpKM2KlLZeGoluB4mXRMlEjG2BI7CnOs\nCLhjS3NTVGjukKY5NRoih+J2Ze+FiEQgGIqMOow6Vccr28Shj8OE0m5K4cowaOvGZuhZXPT4kWPm\n0BaWE5dfme0RL+1zvuUOTk+7+nGyNB2hyDck34rBeRYcueBCWaY2oQuGopAbjhRLHcIbyrKgk3gf\nQqSnyGbA1cXqSocAUJZpgtMbEJ19QUWyV/heselZ8fzGUjzt7TCJET2WaRcxEZpTKWW3NNMo3pMD\n86LnlsW7lotsBpxzeqPSKAX65pjh9gfFYxEYmm/F7nBUzG7QYWLvLE0iIF0BGcZX4OgFF2a8uQeZ\nRh1emz5AdaIu4fLEpGNw77BCfPKfo/H6rQOQbdLh8S3fYMTLn+F320/iYpw6IQQCgZAshI6Q9HeK\noihkGHQYmGdBtonrVB0gtZHzIpshrBAXUp0zhdPdMo3t+xqUZ8Wwgmgni1Mbng4jjMBLIyFT++bg\n1v55qk6CNLUxkRTxckmHt5fdGDW4FktAoVeMTjYA9MkyJxR5UCPPoo84vlgwkkhDLKT+azxJbrnn\n1TvcQRcimUPyraoCDwxNYVC+NeJcdgWFVj1GFtoU1RGVmFCehetLHeiXY26PxERFvEL/kym1RVEU\n+mSZNdeOqr4qF+MVRN5shsiSAUL0pihGtEhAz9IYVZQhpusJc/uE+YRmyXZj3VvSQQ6OoSURr8Tx\nhQdw4kWgGZrC6OIMxbRdwY7RxRlR/fgyhwm5Zk6cc2nh2KRlNpGIl4zD9a2Y8eYeAMC6mUPiqtYQ\nLl9oisLkihzcFE6l+P1np/D8R8fx+89O4fvDCvHAyGJyfRAIhJSSadSh2GaIGtEFQqPvsUbgtUCH\n629djFOo16hjMLbEHjMCMTjPimaPP65jdE2xHfVub5c4LfEozjCgOMMAnucjZct1jGKbSulKBbRJ\nvbOTqq4rnZMTb3DZrGMiigAbGBoTy7PEjj5DU8gJd/QNLC1GLLsThqZEEQ2tCGmMYmRLxSW4HESO\n5cIZnWFIgRWGejqq1IES5Q4TzrV4QgMy4c+U5Obj0dNuxOGG1m4t3/QfPTO7vHadFojjJeHjE424\nf8N+cCyFN2cMiZrYSrgyoSgKY3tmYmzPTOw914JlO05h+Y5v8coXpzFjUD6+P7QQA/M6V5CQQCAQ\nOoKeDY3odicTyrMiJtirEW8gqncMsQcpNgMbNZ9JC0Nltc4SQf78nqRhXndXPvOTXR9Ux9C4ujgD\ntc74Di5FhaJW30jSyOS1kCiKwsTyLDA0hSMNLuRqjESlBFkKnECOmUNJhkGTUMaVhEnHKEaulRiS\nbxVVBTtzfwzINeMqSXSyu+ju7StBHC8ATq8fi7cex5++PIOKbBP+fPughEdSCFcGg/KtWFk9AE+M\nc2HFjm+xZu85rN59Fr0doQrz0/rloCLLRJwwAoFASDJlKRos1TqHLt0oshlQZFMvuKuGWgFaId1r\nUL4VdrsJTU1dp+DXlQhpm3Jnl6YojCzq3kGMKwmhdltH7kuKolQFM7SQbeKQo1IGIdVcsY6Xxx/E\n3toW/PObBqze/R0a2/y4f3ghnqosU80VJRAEyjJN+M2NffFkZRk2HTqP9ftrsfSTE/j1JyeQbdJh\nVFEGri7OwIA8M3o7TCi06okzRiBcAgSDQSxYsACHDh0Cx3FYuHAhevbsGbGO2+3Gfffdh+effx7l\n5eUpspQAAFflmOHydX9qmxo39smOO2eNkF70shth5ZiYEuuEzpNp1IXmiqXACR8Xo8B6qrniPIw5\n/28v3v2mQczspSngpj7Z+NHVPchIByFhHEYd5gwtxJyhhfiuuQ3/OnYBn5++iB2nL+If39SL65l0\nNEozjegRHmEsytCHX+tRbDMg18KlJORNIBAief/99+H1erF27Vrs3r0bixcvxssvvywu37t3L555\n5hnU1sZPvbucGFlo01yzKZlclROthJZMYtWPIqQvxOkipIorzvGaPaQQ/XMsYGgKV+WYMbo4Q5TO\nJBA6Q6HNgNlDCzF7aCEAoNbpweF6F45ccOHoBReONbpx8mIbPv22Cc2eQMR3dTSFAqsePTJCzliO\nmUOmgYXdqEOmgUWmUYcMPQurgYVNz8LKMaICEYFA6Dp27tyJ6667DgAwdOhQ7Nu3L2K51+vF8uXL\n8dhjj6XCvJRB0u8JN/bJTokYAYFwOXHFOV5VvbMi6igQCN1FnkWPPIterKQupbnNj9PNbTjT7In6\n/+mpJtS7fHGVoYwsDauehU3PIMOgQ5ZRB4dJhyyTDg6jDtnh/8JnWUYdbHqWpDwSCDFwOp2wWNqj\nKAzDwO/3g2VDP5cjRoyIuw2LRQ9WZR6MVhiGht1+6Qg8EXu7l3SwV3uZ4vSwVyuXkq0Asbe76W57\nk+Z4xcub/+CDD7B8+XKwLIvbbrsNd955Z7JMIxCSjs3Aor/Bgv656mkybl8AjW4fGtv8aHT70NTm\nh9PjR7MngBavH80eP1o8AbR4/Ghs8+Os04N9dU40uLzwqKQEsTQVcsaMLPQsDY6hoWdocCwNjqFC\nrxkaepaGSUeHHDgzhyxjyHnLNnHIMumQYWBJaiThssRisaC1tVV8HwwGRadLK06np9N2pLM4gRLE\n3u6F2Nt9XEq2AsTe7qYr7M3JsaouS5rjFStv3ufz4YUXXsC6detgNBoxa9YsjB8/HtnZ8eVcCYTL\nFaOOgVHHoFCbiqsIz/No9QVwweXDBbcPDS4fGtw+XJD8v+D2wRMIwuMPwhvg0er2hV+H3nsCQbR6\nA3B6A4r7YCggw8AiwxBKhcwwsLAbdDCwISdOz1Dgwk4cq6HYDQ8gyPPg+VBtlSAfeh/kQ5K/wrIg\nz4vrBnnpd0LHHSrmGlKnYigKdPi18BlNCQVGAQrty8X/NAXwPAI8EAjyEfsJ8DwCQWHfoc8Doo3h\nijASW0L/2993FiFSSYnvQ//lx0cj+rgZun25/LiFYw3wPPzB0F9A9t+vslx47ZN/j+fhCwTbP+N5\nTOubg4U39Ol0O3Q3w4cPx4cffojJkydj9+7dqKioSLVJBAKBQLhMSJrjFStv/ujRoygpKUFGRkjc\nYsSIEfjiiy9w0003RWwjlgdJIBAiKU21AQTCJUhVVRW2bduGmTNngud5LFq0CBs3boTL5cKMGTM0\nbaOrfqsutd88Ym/3QuztPi4lWwFib3fTnfYmzfGKlTfvdDphtbYfpNlshtPpTJZpBAKBQCAAAGia\nxrPPPhvxmZJk/OrVq5NlEoFAIBAuE5ImixYrb16+rLW1NcIRIxAIBAKBQCAQCIRLmaQ5XsOHD8fW\nrVsBICpvvry8HCdPnkRTUxO8Xi++/PJLDBs2LFmmEQgEAoFAIBAIBEK3QvFdMetbA4Kq4eHDh8W8\n+ZqaGjFvXlA15Hket912G+6+++5kmEUgEAgEAoFAIBAI3U7SHK/uJp5cPQC43W7cd999eP755xVz\n9q804rXZpk2bsGrVKjAMg4qKCixYsAA0TYr2xmu3d999FytXrgRFUZg2bRruvffeFFqbPmi5RwHg\n6aefRkZGBn7+85+nwMr0Il6bvf7663jrrbfgcDgAAL/61a9QVlaWKnMJXYDW+yTZ+Hw+PPnkkzhz\n5gy8Xi8eeughFBQUYO7cuejVqxcAYNasWZg8eTLefPNNrFmzBizL4qGHHsL111+fEptvueUWcW55\ncXExHnzwQTzxxBOgKAp9+vTBM888A5qm08Le9evXY8OGDQAAj8eDAwcOYO3atWnZvl9//TV+85vf\nYPXq1Th58qTmNm1ra8Ojjz6KhoYGmM1mLFmyRHx2JcPWAwcO4LnnngPDMOA4DkuWLEF2djYWLlyI\nXbt2wWw2AwBWrFgBnU6XdFvl9tbU1Gg+/6loW7m98+bNQ319PQDgzJkzGDJkCP7nf/4nLdpX6fnV\nu3fv1Fy7/GXCu+++yz/++OM8z/P8V199xT/44IMRy/fs2cPfcsst/LXXXssfOXIkFSamHbHazO12\n8xMmTOBdLhfP8zw/b948/v3330+JnelGrHbz+/18VVUV39zczPv9fn7ixIl8Q0NDqkxNK+LdozzP\n83/961/5O++8k1+6dGmyzUtL4rXZz372M37v3r2pMI3QTWi5T1LBunXr+IULF/I8z/ONjY18ZWUl\n/+abb/KvvfZaxHp1dXX81KlTeY/Hwzc3N4uvk01bWxtfXV0d8dncuXP5zz77jOd5nn/66af5LVu2\npI29UhYsWMCvWbMmLdt35cqV/NSpU/k77riD5/nE2vR///d/+d///vc8z/P8pk2b+Oeeey6ptt59\n9918TU0Nz/Oh35pFixbxPM/zM2fOjPqdTratSvYmcv7TwV6BpqYm/uabb+Zra2t5nk+P9lV6fqXq\n2r1swhex5OoBwOv1Yvny5WQ0WEKsNuM4DmvWrIHRaAQA+P1+6PX6lNiZbsRqN4ZhsHnzZlitVjQ1\nNSEYDILjuFSZmlbEu0d37dqFr7/+WrNk95VAvDbbv38/Vq5ciVmzZuGVV15JhYmELibeOU8VN954\nI376058CCNWlYxgG+/btw7///W/cfffdePLJJ+F0OrFnzx4MGzYMHMfBarWipKQEBw8eTLq9Bw8e\nhNvtxv333485c+Zg9+7d2L9/P0aPHg0AGDduHD799NO0sVdg7969OHLkCGbMmJGW7VtSUoJly5aJ\n7xNpU+m1PW7cOGzfvj2ptr700ku46qqrAACBQAB6vR7BYBAnT57E/PnzMXPmTKxbtw4Akm6rkr2J\nnP90sFdg2bJluOeee5Cbm5s27av0/ErVtXvZOF5qcvUCI0aMQEFBQSpMS1titRlN02IB69WrV8Pl\ncmHs2LEpsTPdiHetsSyLLVu2oLq6GqNHjxad1yudWO1WV1eH5cuXY/78+akyLy2Jd61NmTIFCxYs\nwKpVq7Bz5058+OGHqTCT0IXEO+epwmw2w2KxwOl04uGHH8YjjzyCwYMH47HHHsOf//xn9OjRA8uX\nL0+b8jAGgwE/+MEP8Nprr+FXv/oVfv7zn4PnebEQudlsRktLS9rYK/DKK6/gRz/6EQCkZftOmjRJ\nVKQGkFCbSj8X1k2mrbm5uQBCg3xvvPEGvv/978PlcuGee+7B0qVL8eqrr+Ivf/kLDh48mHRblexN\n5Pyng70A0NDQgO3bt+PWW28FgLRpX6XnV6qu3cvG8YolV09QJl6bBYNBLFmyBNu2bcOyZcvEC/RK\nR8u1NnHiRGzduhU+nw9/+9vfkm1iWhKr3f75z3+isbERDzzwAFauXIlNmzZh/fr1qTI1bYjVZjzP\n495774XD4QDHcaisrERNTU2qTCV0Een8W3b27FnMmTMH1dXVmDZtGqqqqjBw4EAAocLTNTU1aVMe\nprS0FDfffDMoikJpaSnsdjsaGhoi7LLZbGljLwA0Nzfj+PHjuOaaawAgrdtXQDrvO16bSj8X1k02\nmzdvxjPPPIOVK1fC4XDAaDRizpw5MBqNsFgsuOaaa3Dw4MG0sDWR858O9gKh3/KpU6eCYRgASKv2\nlT+/UnXtXjaOVyy5eoIy8dps/vz58Hg8WLFiBYnaSIjVbk6nE/fccw+8Xi9omobRaCSCJGFitduc\nOXOwfv16rF69Gg888ACmTp0qjphdycS71qZOnYrW1lbwPI8dO3aIP9KES5d0/S2rr6/H/fffj0cf\nfRS33347AOAHP/gB9uzZAwDYvn07BgwYgMGDB2Pnzp3weDxoaWnB0aNHU3IM69atw+LFiwEAtbW1\ncDqdGDt2LHbs2AEA2Lp1K0aOHJk29gLAF198gTFjxojv07l9Bfr376+5TYcPH46PPvpIXHfEiBFJ\ntfXvf/873njjDaxevRo9evQAAJw4cQKzZs1CIBCAz+fDrl27MGDAgJTbCiR2/tPBXsHOcePGie/T\npX2Vnl+punbTYxitC6iqqsK2bdswc+ZMUa5+48aNolw9IZpYbTZw4ECsW7cOI0eOFFX55syZg6qq\nqhRbnXriXWvTpk3D3XffDZZl0bdvX9x8882pNjktIPdo4sRrs3nz5mHOnDngOA5jxoxBZWVlqk0m\ndBKlc54O/PGPf0RzczNWrFiBFStWAACeeOIJLFq0CDqdDtnZ2XjuuedgsVgwe/Zs3HXXXeB5HvPm\nzUvJ/ODbb78dv/jFLzBr1ixQFIVFixYhMzMTTz/9NF566SWUlZVh0qRJYBgmLewFgOPHj6O4uFh8\nv2DBAjz33HNp2b4Cjz/+uOY2nTVrFh5//HHMmjULOp0OL774YtLsDAQCeP7551FQUICf/OQnAIBR\no0bh4YcfRnV1Ne68807odDpUV1ejT58+KC4uTpmtAomc/1S2rZTjx4+LTi0QqtObDu2r9Pz65S9/\niYULFyb92r1s5OQJBAKBQCAQCAQCIV0hOVAEAoFAIBAIBAKB0M0Qx4tAIBAIBAKBQCAQuhnieBEI\nBAKBQCAQCARCN0McLwKBQCAQCAQCgUDoZojjRSAQCAQCgUAgEAjdDHG8CAQCgUAgEAgEAqGbIY4X\ngUAgEAgEAoFAIHQz/x8LtAeAqiThMwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "pm.traceplot(trace_0);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The second model is exactly the same as the first one, except we now use the logarithm of the mass"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Auto-assigning NUTS sampler...\n",
+ "Initializing NUTS using ADVI...\n",
+ "Average Loss = 9.5197: 11%|█ | 21758/200000 [00:03<00:26, 6805.33it/s]\n",
+ "Convergence archived at 22200\n",
+ "Interrupted at 22,200 [11%]: Average Loss = 26.56\n",
+ "100%|██████████| 2500/2500 [00:03<00:00, 781.01it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "with pm.Model() as model_1:\n",
+ " alpha = pm.Normal('alpha', mu=0, sd=10)\n",
+ " beta = pm.Normal('beta', mu=0, sd=1)\n",
+ " sigma = pm.HalfNormal('sigma', 10)\n",
+ " \n",
+ " mu = alpha + beta * d['log_mass']\n",
+ " \n",
+ " kcal = pm.Normal('kcal', mu=mu, sd=sigma, observed=d['kcal.per.g'])\n",
+ " \n",
+ " trace_1 = pm.sample(2000)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And finally the third model using the `neocortex` and `log_mass` variables"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Auto-assigning NUTS sampler...\n",
+ "Initializing NUTS using ADVI...\n",
+ "Average Loss = 9.7679: 11%|█ | 21786/200000 [00:03<00:25, 7027.79it/s]\n",
+ "Convergence archived at 21900\n",
+ "Interrupted at 21,900 [10%]: Average Loss = 26.927\n",
+ "100%|██████████| 2500/2500 [00:04<00:00, 574.80it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "with pm.Model() as model_2:\n",
+ " alpha = pm.Normal('alpha', mu=0, sd=10)\n",
+ " beta = pm.Normal('beta', mu=0, sd=1, shape=2)\n",
+ " sigma = pm.HalfNormal('sigma', 10)\n",
+ "\n",
+ " mu = alpha + pm.math.dot(beta, d[['neocortex','log_mass']].T)\n",
+ "\n",
+ " kcal = pm.Normal('kcal', mu=mu, sd=sigma, observed=d['kcal.per.g'])\n",
+ "\n",
+ " trace_2 = pm.sample(2000)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now that we have sampled the posterior for the 3 models, we are going to use WAIC (Widely applicable information criterion) to compare the 3 models. We can do this using the `compare` function included with PyMC3."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " WAIC | \n",
+ " pWAIC | \n",
+ " dWAIC | \n",
+ " weight | \n",
+ " SE | \n",
+ " dSE | \n",
+ " warning | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 | \n",
+ " -15.5565 | \n",
+ " 2.44088 | \n",
+ " 0 | \n",
+ " 0.951596 | \n",
+ " 4.7749 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -8.99463 | \n",
+ " 2.01189 | \n",
+ " 6.56192 | \n",
+ " 0.0357726 | \n",
+ " 4.1411 | \n",
+ " 0.889976 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " -6.91266 | \n",
+ " 1.9867 | \n",
+ " 8.64388 | \n",
+ " 0.0126316 | \n",
+ " 3.1031 | \n",
+ " 3.81202 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " WAIC pWAIC dWAIC weight SE dSE warning\n",
+ "2 -15.5565 2.44088 0 0.951596 4.7749 0 1\n",
+ "1 -8.99463 2.01189 6.56192 0.0357726 4.1411 0.889976 1\n",
+ "0 -6.91266 1.9867 8.64388 0.0126316 3.1031 3.81202 0"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "traces = [trace_0, trace_1, trace_2]\n",
+ "models = [model_0, model_1, model_2]\n",
+ "comp = pm.compare(traces, models)\n",
+ "comp"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can see that the best model is `model_2`, the one with both predictor variables. Notice the DataFrame is ordered from lowest to highest WAIC (_i.e_ from _better_ to _worst_ model). Check [this notebook](model_comparison.ipynb) for a more detailed discussing on model comparison.\n",
+ "\n",
+ "We can also see that we get a column with the relative `weight` for each model (according to the first equation at the beginning of this notebook). This weights can be _vaguely_ interpreted as the probability that each model will make the correct predictions on future data. Of course this interpretation is conditional on the models used to compute the weights, if we add or remove models the weights will change. And also is dependent on the assumptions behind WAIC (or any other Information Criterion used). So try to do not overinterpret these `weights`. \n",
+ "\n",
+ "We are going to use these weights to generate predictions based not on a single model but on the weighted set of models. This is one way to perform model averaging. Using PyMC3 we can call the `sample_ppc_w` function as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 1000/1000 [00:30<00:00, 32.31it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "ppc_w = pm.sample_ppc_w(traces, 1000, models, weights=comp.weight)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We are also going to compute PPCs for the lowest-WAIC model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 1000/1000 [00:36<00:00, 28.42it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "ppc_2 = pm.sample_ppc(trace_2, 1000, model_2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A simple way to compare both kind of predictions is to plot their mean and hpd interval"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEBCAYAAADbxHY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFKdJREFUeJzt3X1clfX9x/E3HpBhcpP+iJJ7CN1mhuDKyh/pptUq51JS\ni3nK5Wbe/bK0GxVRc9qNN9Nld7Kp+GDmbxaa2rQsfFjNWUvBRLvZY6gMcCM17qGDh3P9/mjyy1BE\n1O/FydfzL7kuznU+fB/n8fJ6XIdz4WNZliUAgBEd7B4AAC4lRBcADCK6AGAQ0QUAg4guABhEdAHA\nIN+Wdh49Wm1qDq/UubO/ampcdo/R7rFOZ8catY63rFNoaOAZ93Gmex58fR12j+AVWKezY41a57uw\nTkQXAAwiugBgENEFAIOILgAYRHQBwCCiCwAGEV0AMIjoAl4o50CZkl/cpbBndij5xV3KOVBm90hy\nuVy6++6fnXF/Xt5uzZ49vdn2F174nR588Jf61a/u06ZNGy7miO1Ci59IA9D+5Bwo05Stn6ve7ZEk\nlVS5NGXr55Kk1J5hdo52zvLydqukpFjLl69SQ0ODnM4RGjBgoIKCguwe7aIhuoCXuGtNviRpz5Eq\nuRpP/YMv9W6PHt7ymbL3HtHrv0g652Nv2bJZO3e+J5fLpePHj2n48Hv1/vvv6tChQk2cOFkpKQO0\nbdtWrVu3Vn5+foqMjNLjj6eroaFBc+fOVHV1tcLDI5qOV1j4Dy1dulCWZSk4OFjTp88+7fP27NlL\nV1/dXZLk4+Mjj8cjX9/vdpa+2z8d8B307eCebXtr1dXVacmSF/TOO2/pT396RZmZWcrP36NXX12r\na6/trRUrlmvVqjXq1OkyPffcYm3cmCOXq0GxsfF68MGJOnBgv/LydkuSnn12nqZPn6XY2Di98cbr\nWrNmta67rm+z5/T395e/v7/cbrfmzZutIUOGqlOnTuf1c7R3RBfwEifPYJNf3KWSquY3fYkI8m/T\nWe5JCQk9JEmdOwcqJiZWPj4+CgwMlMvVoCNHShUbG6dOnS6TJCUmJuujjz5QY6NHN93UT5LUs+c1\nTWepRUWHtHjxM5Kkxka3IiKizvi8VVVVysh4QklJfeR0/rLN83sLogt4mfT+cadc05WkAN8OSu8f\nd17H9fHxOeO+q64K1+HDh1RfX6+AgADt3ZunyMgo+fj4aP/+AqWkDNDf//6Z3G63JCkqKlozZ87V\nlVdeqX379ur48WOnPa7L9ZUefni87rlnlG699fbzmt9bEF3Ay5x8s2z+uwdVWuVSeJC/0vvHXdQ3\n0UJCQvTAAw/qoYcelI9PB0VERGrcuEmSpHnzZmv8+DGKjo6Rn5+fJGnq1OmaN2+WGhsb5ePjo2nT\nMnTs2NFmx3399RwdOVKqTZs2NP3mwowZs9WtW/hF+1ns5tPSn2DnfrotCwnppIqKOrvHaPdYp7Nj\njVrHW9aJ++kCQDtBdAHAIKILAAYRXQAwiOgCgEFEFwAMIrqAF8opKVBy7lKFvfGkknOXKqekwPgM\n2dlZ+uST/WfcP2nSWBUVHW62PSfnT61+jpdeWqYtWza3ZbwWFRUd1qRJY8+4f8uWzXrppWUX/Hkl\nogt4nZySAk0p2KyS+kpZkkrqKzWlYLPx8Dqdo/XDH15zzo9bvXrlRZjGe/CJNMBL3PXXLEnSnooS\nuTyNp+yrbzyhh/dtVPY/9+j1m0af87EfeGCUFi9+ToGBQbrjjoFatmy5evT4vh544Bd6+eVV2rRp\nvd5++y35+Pho4MBbNXz4PZo/f44GDrxVSUnJ+s1vZuv48aO64oow7d2br40b35QkrVyZqfLyL1Vf\nX685c+brnXfeUlVVpRYtekYPP/yoFi58SiUlxfJ4PPr1r8crOflH2rEjV6tXr1BIyOU6ceKEoqNj\nTpl1xYrlKi0tUUVFhaqqKjVs2HDt2LFdxcVFSk9/Utdc00tr1/5Rubnb5HA4lJiYpAkTHtKxY8c0\nd+5MWZalLl26Nh0vP3+PMjNflMPhULdu4Xr88fSmfS6XS7NmTVNtba2++uorjR07Qddff8M5r+83\nEV3Ay3w7uGfb3hopKf314Ye7dMUVYbrqqm7avftDdezYUZGRUSotLVFu7tt68cU/SJIeeWSi+vb9\n//Bs3LhB3bp107x5z6qo6LCczhFN+2666b912213aMWK5dqxI1f33z9GOTnr9Oij07Rhw2sKDg7R\n9OmzVFlZoYkTxyor6xUtW7ZEK1f+UUFBwXrsscmnndff31+//e0yZWdnadeunVqwYIn+/OdNys3d\npoCAAG3f/rZefnmlHA6H0tMf186d7+vDD/+qQYNu05AhQ5Wbu00bNrwmy7L07LPz9dJLf9Dll3fR\n73//krZs2dx0457S0hJVVlZq8eLnVF5eruLiojav8UlEF/ASJ89gk3OXqqS+stn+iIDgNp3lSlL/\n/j/W6tUrFRZ2pcaOnaDXXvtfeTyW+vcfqIMHC1VW9m9NnjxeklRdXa3i4uKmxxYVHVLfvjdJkqKj\nYxQScnnTvh49fiBJ6tq1q44fP37KcxYW/kP79uU3XRdubHTr2LFjCgoKUnBwiCTpmmuuPe283bt/\nX5IUGNhZMTGx//l3kBoaXCoqOqyePXs1hTMxsbcOHSpUcfE/9bOfDZUk9eqVqA0bXlNFRbmOHz+m\njIxpkr4+s73uur6KiIiUJMXFxevnPx+mOXPS5Xa7dffd97Rpfb+Ja7qAl0nvMVABDr9TtgU4/JTe\nY2CbjxkXd7WOHCnVp58e0I039lN9fb3+8pd3deON/RQVFa2YmDgtW7Zczz+fqTvuGKz4+IRvPDZe\n+/fvk3TyzLCiad/p7lx28nYv0dExGjToNj3/fKYWL35OP/7xIHXt2lU1NTUqLy+XJH322SennbeF\nG6IpOjpGn3yyX263W5Zlae/efEVGfv0zHDjw9Zyffvr1cYODQ3TFFVfomWd+q+efz9T99z+gPn2u\nazpWYeE/VFdXq4ULf6f09Ce1dOnC1ixnizjTBbxMakQvSdL8z3NVWl+p8IBgpfcY2LS9rZKS+uhf\n/zqiDh06qHfvZB0+fFABAQFKSOiuH/3oOk2YMEYNDSf0gx/0VGhoaNPjBg/+uebPf1ITJ/5aV155\npTp27Nji88TExGru3AxNm5ahZ5+dp0mTxqq2tkZDhw6Xn5+fHnnkcU2dOkmBgcFt+isS8fFX6yc/\nGaTx48fIsixde22ibr55gBITkzR37ky98862pruYdejQQZMnP6rHHpssy7LUqdNlysh4UmVl/5Yk\nRUREatWqTG3f/o48Ho/GjHnwnOf5Nu4ydh685Y5HdmOdzs6b16ig4GPV19fr+utvUHHxPzV16v9o\n3bqNF+W5vGWdWrrLGGe6AM5Lt27hmjMnXatWZcrtdmvKlCfsHqldI7oAzkvXrv+lZcuW2z2G1+CN\nNAAwiOgCgEFEFwAMIroAYBDRBQCDiC4AGER0AcAgogsABhFdADCI6AKAQUQXAAwiugBgENEFAIOI\nLgAYRHQBwCCiCwAGEV0AMIjoAoBBRBcADCK6AGAQ0QUAg4guABhEdAHAIKILAAYRXQAwiOgCgEFE\nFwAMIroAYBDRBQCDiC4AGER0AcAgogsABhFdADCI6AKAQUQXAAwiugBgENEFAIOILgAYRHQBwCCi\nCwAGEV0AMIjoAoBBRBcADCK6AGAQ0QUAg4guABhEdAHAIKILAAYRXQAwiOgCgEFEFwAM8rV7AOBc\n5Bwo0/x3D6q0yqXwIH+l949Tas8wu8cCWo3owmvkHCjTlK2fq97tkSSVVLk0ZevnkkR44TV8LMuy\nzrTz6NFqk7NcdHetyb+gx/P1dcjtbrygx/wuulDrtOdIlVyNzV+u/g4f9ekWdN7Ht9Ol/lp6/RdJ\nrfq+kJBOqqiou8jTnL/Q0MAz7uOaLrzG6YLb0nagPbqkznQvNG/5X9duF2qdkl/cpZIqV7PtEUH+\nyptw43kf3068llrHW9aJM118J6T3j1OA76kv2QDfDkrvH2fTRMC54400eI2Tb5bx2wvwZkQXXiW1\nZxiRhVfj8gIAGER0AcAgogsABhFdADCI6AKAQUQXAAwiugBgENEFAIOILgAYRHQBwCCiCwAGEV0A\nMIjoAoBBRBcADCK6AGAQ0QUAg4guABhEdAHAIKILAAYRXQAwiOgCgEFEFwAMIroAYBDRBQCDiC4A\nGER0AcAgogsABhFdADCI6AKAQUQXAAwiugBgENEFAIOILgAYRHQBwCCiCwAG+do9AHCuckoKNP/z\nXJXWVyo8IFjpPQYqNaKX3WMBrUJ04VVySgo0pWCz6htPSJJK6is1pWCzJBFeeAUfy7KsM+08erS6\nzQe+669ZbX6st/D1dcjtbrR7jHbvQq7TnooSuTzNj+XfwaE+IREX5DnswGupdUyu0+s3jW7zY0ND\nA8+4j2u68CqnC25L24H25qKd6V4KQkI6qaKizu4x2r0LuU7JuUtVUl/ZbHtEQLDyBj58QZ7DDryW\nWsdb1okzXXxnpPcYqACH3ynbAhx+Su8x0KaJgHPDG2nwKiffLOO3F+CtiC68TmpELyILr8XlBQAw\niOgCgEFEFwAMIroAYBDRBQCDiC4AGER0AcAgogsABhFdADCI6AKAQUQXAAwiugBgENEFAIOILgAY\nRHQBwCCiCwAGEV0AMIjoAoBBRBcADCK6AGAQ0QUAg4guABhEdAHAIKILAAYRXQAwiOgCgEFEFwAM\nIroAYBDRBQCDiC4AGER0AcAgogsABhFdADCI6AKAQUQXAAwiugBgENEFAIOILgAYRHQBwCCiCwAG\nEV0AMIjoAoBBRBcADCK6AGAQ0QUAg4guABhEdAHAIKILAAYRXQAwiOgCgEFEFwAMIroAYBDRBQCD\niC4AGER0AcAgogsABhFdADCI6AKAQUQXAAwiugBgENEFAIOILgAYRHQBwCCiCwAGEV0AMIjoAoBB\nRBcADCK6AGAQ0QUAg4guABhEdAHAIKILAAYRXQAwiOgCgEFEFwAMIroAYBDRBQCDiC4AGER0AcAg\nogsABhFdADCI6AKAQT6WZVl2DwEAlwrOdAHAIKILAAYRXQAwiOi2gsfj0axZszRy5Eg5nU4VFRWd\n9vsyMjK0aNEiw9O1D2dbo3379iktLU333nuvHnroIblcLpsmtdfZ1mnTpk0aOnSoUlNT9corr9g0\nZfvw8ccfy+l0Ntu+fft2paamauTIkVq3bp0Nk50nC2f11ltvWU888YRlWZaVn59vjRs3rtn3rF27\n1hoxYoS1cOFC0+O1Cy2tkcfjsYYMGWIdPnzYsizLWrdunVVYWGjLnHY722upX79+Vnl5ueVyuaxB\ngwZZFRUVdoxpu8zMTGvw4MHW8OHDT9ne0NDQtC4ul8saNmyYdfToUZumbBvOdFthz549SklJkST1\n7t1b+/fvP2V/Xl6ePv74Y40cOdKO8dqFltbo0KFDCgkJUVZWlkaNGqWKigrFxcXZNaqtzvZa6tGj\nh6qrq9XQ0CDLsuTj42PHmLaLiorSsmXLmm0vLCxUVFSUgoOD1bFjR/Xp00cfffSRDRO2HdFthZqa\nGnXu3Lnpa4fDIbfbLUn64osv9MILL2jWrFl2jdcutLRG5eXlys/P16hRo7Rq1Sp98MEH2rVrl12j\n2qqldZKkhIQEpaam6s4779SAAQMUFBRkx5i2u+222+Tr69tse01NjQIDA5u+vuyyy1RTU2NytPNG\ndFuhc+fOqq2tbfra4/E0vSDefPNNlZeXa+zYscrMzNQbb7yh9evX2zWqbVpao5CQEEVHRys+Pl5+\nfn5KSUlpdoZ3qWhpnT777DPt2LFDubm52r59u7788ktt3brVrlHbpW+vX21t7SkR9gZEtxWSk5P1\n3nvvSZL27t2r7t27N+277777tH79emVnZ2vs2LEaPHiwhg0bZteotmlpjSIjI1VbW9v0ptHu3buV\nkJBgy5x2a2mdAgMD9b3vfU/+/v5yOBzq0qWLqqqq7Bq1XYqPj1dRUZEqKirU0NCg3bt3Kykpye6x\nzknz83c0c8stt2jnzp265557ZFmWnnrqKW3evFl1dXWX9HXcbzrbGs2fP19Tp06VZVlKSkrSgAED\n7B7ZFmdbp5EjRyotLU1+fn6KiorS0KFD7R65XfjmGk2bNk1jxoyRZVlKTU1VWFiY3eOdEz4GDAAG\ncXkBAAwiugBgENEFAIOILgAYRHQBwCCii4tu/fr153UjIKfTqcLCwgs4EWAfogsABvHhCBjz5Zdf\nasKECZo8ebKSkpI0ffp0HTlyRCdOnFBGRoYSEhKUnp6u6upqffHFF0pLS1NaWtppj+V0OhUbG6tD\nhw7JsiwtWbJEoaGhWrx4sXbv3i2Px6PRo0fr9ttvl9PpVJcuXVRZWakVK1bI4XBIkoqKijRt2jT5\n+voqPDxcpaWlys7ONrkkuAQRXRhx/PhxjR8/XjNmzFBiYqKysrIUHh6uJUuW6PDhw9qxY4c6duyo\nO++8U7feeqvKysrkdDrPGF3p64/Uzp07V2vWrNHy5cuVkpKikpISrV27Vi6XSyNGjFC/fv0kSYMH\nD9Ytt9xyyuMXLFigcePGqX///lq3bp1KS0sv6hoAEtGFIe+//75CQ0Pl8XgkSQcPHtTNN98sSYqJ\nidHo0aNVVlam1atXa9u2bercufMpd986nRtuuEHS1/Hdvn27wsLCdODAgaYbX7vd7qaQxsbGNnt8\nYWFh0+f2+/Tpo82bN1+YHxZoAdd0YcRdd92lBQsWaObMmaqrq1N8fLwKCgokScXFxZo6dapWrlyp\n3r17a9GiRfrpT3+qs31C/eSdyvLy8nT11VcrLi5Offv2VXZ2tlavXq3bb79dkZGRknTa+9J2795d\n+fn5kr7+KwWACZzpwpiEhAQNGTJETz/9tGbOnKkZM2Zo1KhRamxs1IwZM1RbW6t58+Zpy5YtCgwM\nlMPhUENDwxmPt2HDBmVlZSkgIEALFixQSEiI/va3vyktLU11dXUaNGjQKfeu/bZHH31UM2bM0MqV\nKxUYGHja+7cCFxo3vIFXcjqdmjNnjuLj49t8jE2bNikxMVHR0dF69dVXlZeXp6effvoCTgk0x3/t\nuGRdddVVeuSRRxQQEKAOHTroqaeesnskXAI40wUAg3gjDQAMIroAYBDRBQCDiC4AGER0AcAgogsA\nBv0fn8ahWZJqNysAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "mean_w = ppc_w['kcal'].mean()\n",
+ "hpd_w = pm.hpd(ppc_w['kcal']).mean(0)\n",
+ "\n",
+ "mean = ppc_2['kcal'].mean()\n",
+ "hpd = pm.hpd(ppc_2['kcal']).mean(0)\n",
+ "\n",
+ "plt.errorbar(mean, 1, xerr=[[mean - hpd]], fmt='o', label='model 2')\n",
+ "plt.errorbar(mean_w, 0, xerr=[[mean_w - hpd_w]], fmt='o', label='weighted models')\n",
+ "\n",
+ "plt.yticks([])\n",
+ "plt.ylim(-2, 3)\n",
+ "plt.xlabel('kcal per g')\n",
+ "plt.legend();"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As we can see the mean value is almost the same for both predictions but the uncertainty in the weighted model is larger. We have effectively propagated the uncertainty about which model we should select to the posterior predictive samples.\n",
+ "\n",
+ "**Final notes:** \n",
+ "\n",
+ "There are other ways to average models such as, for example, explicitly building a meta-model that includes all the models we have. We then perform parameter inference while jumping between the models. One problem with this approach is that jumping between models could hamper the proper sampling of the posterior.\n",
+ "\n",
+ "Besides averaging discrete models we can sometimes think of continuous versions of them. A toy example is to imagine that we have a coin and we want to estimated it's degree of bias, a number between 0 and 1 being 0.5 equal chance of head and tails. We could think of two separated models one with a prior biased towards heads and one towards tails. We could fit both separate models and then average them using, for example, IC-derived weights. As an alternative, is to build a hierarchical model to estimate the prior distribution, instead of contemplating two discrete models we will be computing a continuous model that includes these two both discrete models as particular cases. Which approach is better? That depends on our concrete problem. Do we have good reasons to think about two discrete models, or is our problem better represented with a continuous bigger model?"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/docs/source/notebooks/Model Comparison.ipynb b/docs/source/notebooks/model_comparison.ipynb
similarity index 100%
rename from docs/source/notebooks/Model Comparison.ipynb
rename to docs/source/notebooks/model_comparison.ipynb
diff --git a/pymc3/examples/data/milk.csv b/pymc3/examples/data/milk.csv
new file mode 100644
index 0000000000..c0b8fbb832
--- /dev/null
+++ b/pymc3/examples/data/milk.csv
@@ -0,0 +1,18 @@
+kcal.per.g,neocortex,log_mass
+0.490,0.552,0.668
+0.470,0.645,1.658
+0.560,0.645,1.681
+0.890,0.676,0.920
+0.920,0.688,-0.386
+0.800,0.589,-2.120
+0.460,0.617,-0.755
+0.710,0.603,-1.139
+0.680,0.700,0.438
+0.970,0.704,1.176
+0.840,0.734,2.510
+0.620,0.675,1.681
+0.540,0.713,3.569
+0.490,0.726,4.375
+0.480,0.702,3.707
+0.550,0.763,3.500
+0.710,0.755,4.006
diff --git a/pymc3/sampling.py b/pymc3/sampling.py
index 511f343abe..c9b081255d 100644
--- a/pymc3/sampling.py
+++ b/pymc3/sampling.py
@@ -18,7 +18,7 @@
import sys
sys.setrecursionlimit(10000)
-__all__ = ['sample', 'iter_sample', 'sample_ppc', 'init_nuts']
+__all__ = ['sample', 'iter_sample', 'sample_ppc', 'sample_ppc_w', 'init_nuts']
STEP_METHODS = (NUTS, HamiltonianMC, Metropolis, BinaryMetropolis,
BinaryGibbsMetropolis, Slice, CategoricalGibbsMetropolis)
@@ -489,6 +489,7 @@ def _update_start_vals(a, b, model):
a.update({k: v for k, v in b.items() if k not in a})
+
def sample_ppc(trace, samples=None, model=None, vars=None, size=None,
random_seed=None, progressbar=True):
"""Generate posterior predictive samples from a model given a trace.
@@ -496,7 +497,7 @@ def sample_ppc(trace, samples=None, model=None, vars=None, size=None,
Parameters
----------
trace : backend, list, or MultiTrace
- Trace generated from MCMC sampling
+ Trace generated from MCMC sampling.
samples : int
Number of posterior predictive samples to generate. Defaults to the
length of `trace`
@@ -508,12 +509,19 @@ def sample_ppc(trace, samples=None, model=None, vars=None, size=None,
size : int
The number of random draws from the distribution specified by the
parameters in each sample of the trace.
+ random_seed : int
+ Seed for the random number generator.
+ progressbar : bool
+ Whether or not to display a progress bar in the command line. The
+ bar shows the percentage of completion, the sampling speed in
+ samples per second (SPS), and the estimated remaining time until
+ completion ("expected time of arrival"; ETA).
Returns
-------
samples : dict
- Dictionary with the variables as keys. The values corresponding
- to the posterior predictive samples.
+ Dictionary with the variables as keys. The values corresponding to the
+ posterior predictive samples.
"""
if samples is None:
samples = len(trace)
@@ -526,18 +534,124 @@ def sample_ppc(trace, samples=None, model=None, vars=None, size=None,
seed(random_seed)
+ indices = randint(0, len(trace), samples)
if progressbar:
- indices = tqdm(randint(0, len(trace), samples), total=samples)
- else:
- indices = randint(0, len(trace), samples)
+ indices = tqdm(indices, total=samples)
try:
ppc = defaultdict(list)
for idx in indices:
param = trace[idx]
for var in vars:
- vals = var.distribution.random(point=param, size=size)
- ppc[var.name].append(vals)
+ ppc[var.name].append(var.distribution.random(point=param,
+ size=size))
+
+ except KeyboardInterrupt:
+ pass
+
+ finally:
+ if progressbar:
+ indices.close()
+
+ return {k: np.asarray(v) for k, v in ppc.items()}
+
+
+def sample_ppc_w(traces, samples=None, models=None, size=None, weights=None,
+ random_seed=None, progressbar=True):
+ """Generate weighted posterior predictive samples from a list of models and
+ a list of traces according to a set of weights.
+
+ Parameters
+ ----------
+ traces : list
+ List of traces generated from MCMC sampling. The number of traces should
+ be equal to the number of weights.
+ samples : int
+ Number of posterior predictive samples to generate. Defaults to the
+ length of the shorter trace in traces.
+ models : list
+ List of models used to generate the list of traces. The number of models
+ should be equal to the number of weights and the number of observed RVs
+ should be the same for all models.
+ By default a single model will be inferred from `with` context, in this
+ case results will only be meaningful if all models share the same
+ distributions for the observed RVs.
+ size : int
+ The number of random draws from the distributions specified by the
+ parameters in each sample of the trace.
+ weights: array-like
+ Individual weights for each trace. Default, same weight for each model.
+ random_seed : int
+ Seed for the random number generator.
+ progressbar : bool
+ Whether or not to display a progress bar in the command line. The
+ bar shows the percentage of completion, the sampling speed in
+ samples per second (SPS), and the estimated remaining time until
+ completion ("expected time of arrival"; ETA).
+
+ Returns
+ -------
+ samples : dict
+ Dictionary with the variables as keys. The values corresponding to the
+ posterior predictive samples from the weighted models.
+ """
+ seed(random_seed)
+
+ if models is None:
+ models = [modelcontext(models)] * len(traces)
+
+ if weights is None:
+ weights = [1] * len(traces)
+
+ if len(traces) != len(weights):
+ raise ValueError('The number of traces and weights should be the same')
+
+ if len(models) != len(weights):
+ raise ValueError('The number of models and weights should be the same')
+
+ lenght_morv = len(models[0].observed_RVs)
+ if not all(len(i.observed_RVs) == lenght_morv for i in models):
+ raise ValueError(
+ 'The number of observed RVs should be the same for all models')
+
+ weights = np.asarray(weights)
+ p = weights / np.sum(weights)
+
+ min_tr = min([len(i) for i in traces])
+
+ n = (min_tr * p).astype('int')
+ # ensure n sum up to min_tr
+ idx = np.argmax(n)
+ n[idx] = n[idx] + min_tr - np.sum(n)
+
+ trace = np.concatenate([np.random.choice(traces[i], j)
+ for i, j in enumerate(n)])
+
+ variables = []
+ for i, m in enumerate(models):
+ variables.extend(m.observed_RVs * n[i])
+
+ len_trace = len(trace)
+
+ if samples is None:
+ samples = len_trace
+
+ indices = randint(0, len_trace, samples)
+
+ if progressbar:
+ indices = tqdm(indices, total=samples)
+
+ try:
+ ppc = defaultdict(list)
+ for idx in indices:
+ param = trace[idx]
+ var = variables[idx]
+ ppc[var.name].append(var.distribution.random(point=param,
+ size=size))
+
+ except KeyboardInterrupt:
+ pass
+
finally:
if progressbar:
indices.close()