@@ -918,7 +918,7 @@ class Wishart(Continuous):
918
918
----------
919
919
nu : tensor_like of int
920
920
Degrees of freedom, > 0.
921
- V : array_like
921
+ V : tensor_like of float
922
922
p x p positive definite matrix.
923
923
924
924
Notes
@@ -1262,41 +1262,41 @@ class LKJCholeskyCov:
1262
1262
1263
1263
Parameters
1264
1264
----------
1265
- name: str
1265
+ name : str
1266
1266
The name given to the variable in the model.
1267
- eta: float
1267
+ eta : tensor_like of float
1268
1268
The shape parameter (eta > 0) of the LKJ distribution. eta = 1
1269
1269
implies a uniform distribution of the correlation matrices;
1270
1270
larger values put more weight on matrices with few correlations.
1271
- n: int
1271
+ n : tensor_like of int
1272
1272
Dimension of the covariance matrix (n > 1).
1273
- sd_dist: unnamed distribution
1273
+ sd_dist : Distribution
1274
1274
A positive scalar or vector distribution for the standard deviations, created
1275
1275
with the `.dist()` API. Should have `shape[-1]=n`. Scalar distributions will be
1276
1276
automatically resized to ensure this.
1277
1277
1278
1278
.. warning:: sd_dist will be cloned, rendering it independent of the one passed as input.
1279
1279
1280
- compute_corr: bool, default=True
1280
+ compute_corr : bool, default=True
1281
1281
If `True`, returns three values: the Cholesky decomposition, the correlations
1282
1282
and the standard deviations of the covariance matrix. Otherwise, only returns
1283
1283
the packed Cholesky decomposition. Defaults to `True`.
1284
1284
compatibility.
1285
- store_in_trace: bool, default=True
1285
+ store_in_trace : bool, default=True
1286
1286
Whether to store the correlations and standard deviations of the covariance
1287
1287
matrix in the posterior trace. If `True`, they will automatically be named as
1288
1288
`{name}_corr` and `{name}_stds` respectively. Effective only when
1289
1289
`compute_corr=True`.
1290
1290
1291
1291
Returns
1292
1292
-------
1293
- chol: TensorVariable
1293
+ chol : TensorVariable
1294
1294
If `compute_corr=True`. The unpacked Cholesky covariance decomposition.
1295
- corr: TensorVariable
1295
+ corr : TensorVariable
1296
1296
If `compute_corr=True`. The correlations of the covariance matrix.
1297
- stds: TensorVariable
1297
+ stds : TensorVariable
1298
1298
If `compute_corr=True`. The standard deviations of the covariance matrix.
1299
- packed_chol: TensorVariable
1299
+ packed_chol : TensorVariable
1300
1300
If `compute_corr=False` The packed Cholesky covariance decomposition.
1301
1301
1302
1302
Notes
@@ -1507,9 +1507,9 @@ class LKJCorr(BoundedContinuous):
1507
1507
1508
1508
Parameters
1509
1509
----------
1510
- n: int
1510
+ n : tensor_like of int
1511
1511
Dimension of the covariance matrix (n > 1).
1512
- eta: float
1512
+ eta : tensor_like of float
1513
1513
The shape parameter (eta > 0) of the LKJ distribution. eta = 1
1514
1514
implies a uniform distribution of the correlation matrices;
1515
1515
larger values put more weight on matrices with few correlations.
@@ -1649,20 +1649,20 @@ class MatrixNormal(Continuous):
1649
1649
1650
1650
Parameters
1651
1651
----------
1652
- mu: array
1652
+ mu : tensor_like of float
1653
1653
Array of means. Must be broadcastable with the random variable X such
1654
- that the shape of mu + X is (m,n ).
1655
- rowcov: mxm array
1654
+ that the shape of mu + X is (M, N ).
1655
+ rowcov : (M, M) tensor_like of float, optional
1656
1656
Among-row covariance matrix. Defines variance within
1657
1657
columns. Exactly one of rowcov or rowchol is needed.
1658
- rowchol: mxm array
1658
+ rowchol : (M, M) tensor_like of float, optional
1659
1659
Cholesky decomposition of among-row covariance matrix. Exactly one of
1660
1660
rowcov or rowchol is needed.
1661
- colcov: nxn array
1661
+ colcov : (N, N) tensor_like of float, optional
1662
1662
Among-column covariance matrix. If rowcov is the identity matrix,
1663
1663
this functions as `cov` in MvNormal.
1664
1664
Exactly one of colcov or colchol is needed.
1665
- colchol: nxn array
1665
+ colchol : (N, N) tensor_like of float, optional
1666
1666
Cholesky decomposition of among-column covariance matrix. Exactly one
1667
1667
of colcov or colchol is needed.
1668
1668
@@ -1850,27 +1850,26 @@ class KroneckerNormal(Continuous):
1850
1850
======== ==========================
1851
1851
Support :math:`x \in \mathbb{R}^N`
1852
1852
Mean :math:`\mu`
1853
- Variance :math:`K = \bigotimes K_i` + \sigma^2 I_N
1853
+ Variance :math:`K = \bigotimes K_i + \sigma^2 I_N`
1854
1854
======== ==========================
1855
1855
1856
1856
Parameters
1857
1857
----------
1858
- mu: array
1858
+ mu : tensor_like of float
1859
1859
Vector of means, just as in `MvNormal`.
1860
- covs: list of arrays
1860
+ covs : list of arrays
1861
1861
The set of covariance matrices :math:`[K_1, K_2, ...]` to be
1862
1862
Kroneckered in the order provided :math:`\bigotimes K_i`.
1863
- chols: list of arrays
1863
+ chols : list of arrays
1864
1864
The set of lower cholesky matrices :math:`[L_1, L_2, ...]` such that
1865
1865
:math:`K_i = L_i L_i'`.
1866
- evds: list of tuples
1866
+ evds : list of tuples
1867
1867
The set of eigenvalue-vector, eigenvector-matrix pairs
1868
1868
:math:`[(v_1, Q_1), (v_2, Q_2), ...]` such that
1869
1869
:math:`K_i = Q_i \text{diag}(v_i) Q_i'`. For example::
1870
1870
1871
1871
v_i, Q_i = at.nlinalg.eigh(K_i)
1872
-
1873
- sigma: scalar, variable
1872
+ sigma : scalar, optional
1874
1873
Standard deviation of the Gaussian white noise.
1875
1874
1876
1875
Examples
@@ -2102,19 +2101,20 @@ class CAR(Continuous):
2102
2101
2103
2102
Parameters
2104
2103
----------
2105
- mu: array
2104
+ mu : tensor_like of float
2106
2105
Real-valued mean vector
2107
- W: Numpy matrix
2106
+ W : (M, M) tensor_like of int
2108
2107
Symmetric adjacency matrix of 1s and 0s indicating
2109
- adjacency between elements.
2110
- alpha: float or array
2108
+ adjacency between elements. If possible, *W* is converted
2109
+ to a sparse matrix, falling back to a dense variable.
2110
+ :func:`~aesara.sparse.basic.as_sparse_or_tensor_variable` is
2111
+ used for this sparse or tensorvariable conversion.
2112
+ alpha : tensor_like of float
2111
2113
Autoregression parameter taking values between -1 and 1. Values closer to 0 indicate weaker
2112
2114
correlation and values closer to 1 indicate higher autocorrelation. For most use cases, the
2113
- support of alpha should be restricted to (0, 1)
2114
- tau: float or array
2115
+ support of alpha should be restricted to (0, 1).
2116
+ tau : tensor_like of float
2115
2117
Positive precision variable controlling the scale of the underlying normal variates.
2116
- sparse: bool, default=False
2117
- Determines whether or not sparse computations are used
2118
2118
2119
2119
References
2120
2120
----------
@@ -2267,9 +2267,9 @@ class StickBreakingWeights(SimplexContinuous):
2267
2267
2268
2268
Parameters
2269
2269
----------
2270
- alpha: float
2270
+ alpha : tensor_like of float
2271
2271
Concentration parameter (alpha > 0).
2272
- K: int
2272
+ K : tensor_like of int
2273
2273
The number of "sticks" to break off from an initial one-unit stick. The length of the weight
2274
2274
vector is K + 1, where the last weight is one minus the sum of all the first sticks.
2275
2275
0 commit comments