|
| 1 | +import numpy as np |
| 2 | + |
| 3 | +import pymc3 as pm |
| 4 | + |
| 5 | + |
| 6 | +def test_split_node(): |
| 7 | + split_node = pm.distributions.tree.SplitNode(index=5, idx_split_variable=2, split_value=3.0) |
| 8 | + assert split_node.index == 5 |
| 9 | + assert split_node.idx_split_variable == 2 |
| 10 | + assert split_node.split_value == 3.0 |
| 11 | + assert split_node.depth == 2 |
| 12 | + assert split_node.get_idx_parent_node() == 2 |
| 13 | + assert split_node.get_idx_left_child() == 11 |
| 14 | + assert split_node.get_idx_right_child() == 12 |
| 15 | + |
| 16 | + |
| 17 | +def test_leaf_node(): |
| 18 | + leaf_node = pm.distributions.tree.LeafNode(index=5, value=3.14, idx_data_points=[1, 2, 3]) |
| 19 | + assert leaf_node.index == 5 |
| 20 | + assert np.array_equal(leaf_node.idx_data_points, [1, 2, 3]) |
| 21 | + assert leaf_node.value == 3.14 |
| 22 | + assert leaf_node.get_idx_parent_node() == 2 |
| 23 | + assert leaf_node.get_idx_left_child() == 11 |
| 24 | + assert leaf_node.get_idx_right_child() == 12 |
| 25 | + |
| 26 | + |
| 27 | +def test_model(): |
| 28 | + X = np.linspace(7, 15, 100) |
| 29 | + Y = np.sin(np.random.normal(X, 0.2)) + 3 |
| 30 | + X = X[:, None] |
| 31 | + |
| 32 | + with pm.Model() as model: |
| 33 | + sigma = pm.HalfNormal("sigma", 1) |
| 34 | + mu = pm.BART("mu", X, Y, m=50) |
| 35 | + y = pm.Normal("y", mu, sigma, observed=Y) |
| 36 | + idata = pm.sample() |
| 37 | + mean = idata.posterior["mu"].stack(samples=("chain", "draw")).mean("samples") |
| 38 | + |
| 39 | + np.testing.assert_allclose(mean, Y, 0.5) |
| 40 | + |
| 41 | + Y = np.repeat([0, 1], 50) |
| 42 | + with pm.Model() as model: |
| 43 | + mu_ = pm.BART("mu_", X, Y, m=50) |
| 44 | + mu = pm.Deterministic("mu", pm.math.invlogit(mu_)) |
| 45 | + y = pm.Bernoulli("y", mu, observed=Y) |
| 46 | + idata = pm.sample() |
| 47 | + mean = idata.posterior["mu"].stack(samples=("chain", "draw")).mean("samples") |
| 48 | + |
| 49 | + np.testing.assert_allclose(mean, Y, atol=0.5) |
| 50 | + |
| 51 | + |
| 52 | +def test_bart_vi(): |
| 53 | + X = np.random.normal(0, 1, size=(3, 250)).T |
| 54 | + Y = np.random.normal(0, 1, size=250) |
| 55 | + X[:, 0] = np.random.normal(Y, 0.1) |
| 56 | + |
| 57 | + with pm.Model() as model: |
| 58 | + mu = pm.BART("mu", X, Y, m=10) |
| 59 | + sigma = pm.HalfNormal("sigma", 1) |
| 60 | + y = pm.Normal("y", mu, sigma, observed=Y) |
| 61 | + idata = pm.sample(random_seed=3415, chains=1) |
| 62 | + var_imp = ( |
| 63 | + idata.sample_stats["variable_inclusion"] |
| 64 | + .stack(samples=("chain", "draw")) |
| 65 | + .mean("samples") |
| 66 | + ) |
| 67 | + var_imp /= var_imp.sum() |
| 68 | + assert var_imp[0] > var_imp[1:].sum() |
| 69 | + np.testing.assert_almost_equal(var_imp.sum(), 1) |
0 commit comments