|
32 | 32 | from pymc.tests.test_distributions_random import BaseTestDistributionRandom
|
33 | 33 |
|
34 | 34 |
|
35 |
| -class TestGaussianRandomWalkRandom(BaseTestDistributionRandom): |
36 |
| - # Override default size for test class |
37 |
| - size = None |
38 |
| - |
39 |
| - pymc_dist = pm.GaussianRandomWalk |
40 |
| - pymc_dist_params = {"mu": 1.0, "sigma": 2, "init": pm.Constant.dist(0), "steps": 4} |
41 |
| - expected_rv_op_params = {"mu": 1.0, "sigma": 2, "init": pm.Constant.dist(0), "steps": 4} |
42 |
| - |
43 |
| - checks_to_run = [ |
44 |
| - "check_pymc_params_match_rv_op", |
45 |
| - "check_rv_inferred_size", |
46 |
| - ] |
47 |
| - |
48 |
| - def check_rv_inferred_size(self): |
49 |
| - steps = self.pymc_dist_params["steps"] |
50 |
| - sizes_to_check = [None, (), 1, (1,)] |
51 |
| - sizes_expected = [(steps + 1,), (steps + 1,), (1, steps + 1), (1, steps + 1)] |
52 |
| - |
53 |
| - for size, expected in zip(sizes_to_check, sizes_expected): |
54 |
| - pymc_rv = self.pymc_dist.dist(**self.pymc_dist_params, size=size) |
55 |
| - expected_symbolic = tuple(pymc_rv.shape.eval()) |
56 |
| - assert expected_symbolic == expected |
57 |
| - |
58 |
| - def test_steps_scalar_check(self): |
59 |
| - with pytest.raises(ValueError, match="steps must be an integer scalar"): |
60 |
| - self.pymc_dist.dist(steps=[1]) |
61 |
| - |
62 |
| - |
63 |
| -def test_gaussianrandomwalk_inference(): |
64 |
| - mu, sigma, steps = 2, 1, 1000 |
65 |
| - obs = np.concatenate([[0], np.random.normal(mu, sigma, size=steps)]).cumsum() |
| 35 | +class TestGaussianRandomWalk: |
| 36 | + class TestGaussianRandomWalkRandom(BaseTestDistributionRandom): |
| 37 | + # Override default size for test class |
| 38 | + size = None |
| 39 | + |
| 40 | + pymc_dist = pm.GaussianRandomWalk |
| 41 | + pymc_dist_params = {"mu": 1.0, "sigma": 2, "init": pm.Constant.dist(0), "steps": 4} |
| 42 | + expected_rv_op_params = {"mu": 1.0, "sigma": 2, "init": pm.Constant.dist(0), "steps": 4} |
| 43 | + |
| 44 | + checks_to_run = [ |
| 45 | + "check_pymc_params_match_rv_op", |
| 46 | + "check_rv_inferred_size", |
| 47 | + ] |
66 | 48 |
|
67 |
| - with pm.Model(): |
68 |
| - _mu = pm.Uniform("mu", -10, 10) |
69 |
| - _sigma = pm.Uniform("sigma", 0, 10) |
| 49 | + def check_rv_inferred_size(self): |
| 50 | + steps = self.pymc_dist_params["steps"] |
| 51 | + sizes_to_check = [None, (), 1, (1,)] |
| 52 | + sizes_expected = [(steps + 1,), (steps + 1,), (1, steps + 1), (1, steps + 1)] |
70 | 53 |
|
71 |
| - obs_data = pm.MutableData("obs_data", obs) |
72 |
| - grw = GaussianRandomWalk("grw", _mu, _sigma, steps=steps, observed=obs_data) |
| 54 | + for size, expected in zip(sizes_to_check, sizes_expected): |
| 55 | + pymc_rv = self.pymc_dist.dist(**self.pymc_dist_params, size=size) |
| 56 | + expected_symbolic = tuple(pymc_rv.shape.eval()) |
| 57 | + assert expected_symbolic == expected |
73 | 58 |
|
74 |
| - trace = pm.sample(chains=1) |
| 59 | + def test_steps_scalar_check(self): |
| 60 | + with pytest.raises(ValueError, match="steps must be an integer scalar"): |
| 61 | + self.pymc_dist.dist(steps=[1]) |
75 | 62 |
|
76 |
| - recovered_mu = trace.posterior["mu"].mean() |
77 |
| - recovered_sigma = trace.posterior["sigma"].mean() |
78 |
| - np.testing.assert_allclose([mu, sigma], [recovered_mu, recovered_sigma], atol=0.2) |
| 63 | + def test_gaussianrandomwalk_inference(self): |
| 64 | + mu, sigma, steps = 2, 1, 1000 |
| 65 | + obs = np.concatenate([[0], np.random.normal(mu, sigma, size=steps)]).cumsum() |
79 | 66 |
|
| 67 | + with pm.Model(): |
| 68 | + _mu = pm.Uniform("mu", -10, 10) |
| 69 | + _sigma = pm.Uniform("sigma", 0, 10) |
80 | 70 |
|
81 |
| -@pytest.mark.parametrize("init", [None, pm.Normal.dist()]) |
82 |
| -def test_gaussian_random_walk_init_dist_shape(init): |
83 |
| - """Test that init_dist is properly resized""" |
84 |
| - grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=1, init=init) |
85 |
| - assert tuple(grw.owner.inputs[-2].shape.eval()) == () |
| 71 | + obs_data = pm.MutableData("obs_data", obs) |
| 72 | + grw = GaussianRandomWalk("grw", _mu, _sigma, steps=steps, observed=obs_data) |
86 | 73 |
|
87 |
| - grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=1, init=init, size=(5,)) |
88 |
| - assert tuple(grw.owner.inputs[-2].shape.eval()) == (5,) |
| 74 | + trace = pm.sample(chains=1) |
89 | 75 |
|
90 |
| - grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=1, init=init, shape=1) |
91 |
| - assert tuple(grw.owner.inputs[-2].shape.eval()) == () |
| 76 | + recovered_mu = trace.posterior["mu"].mean() |
| 77 | + recovered_sigma = trace.posterior["sigma"].mean() |
| 78 | + np.testing.assert_allclose([mu, sigma], [recovered_mu, recovered_sigma], atol=0.2) |
92 | 79 |
|
93 |
| - grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=1, init=init, shape=(5, 1)) |
94 |
| - assert tuple(grw.owner.inputs[-2].shape.eval()) == (5,) |
| 80 | + @pytest.mark.parametrize("init", [None, pm.Normal.dist()]) |
| 81 | + def test_gaussian_random_walk_init_dist_shape(self, init): |
| 82 | + """Test that init_dist is properly resized""" |
| 83 | + grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=1, init=init) |
| 84 | + assert tuple(grw.owner.inputs[-2].shape.eval()) == () |
95 | 85 |
|
96 |
| - grw = pm.GaussianRandomWalk.dist(mu=[0, 0], sigma=1, steps=1, init=init) |
97 |
| - assert tuple(grw.owner.inputs[-2].shape.eval()) == (2,) |
| 86 | + grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=1, init=init, size=(5,)) |
| 87 | + assert tuple(grw.owner.inputs[-2].shape.eval()) == (5,) |
98 | 88 |
|
99 |
| - grw = pm.GaussianRandomWalk.dist(mu=0, sigma=[1, 1], steps=1, init=init) |
100 |
| - assert tuple(grw.owner.inputs[-2].shape.eval()) == (2,) |
| 89 | + grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=1, init=init, shape=1) |
| 90 | + assert tuple(grw.owner.inputs[-2].shape.eval()) == () |
101 | 91 |
|
102 |
| - grw = pm.GaussianRandomWalk.dist(mu=np.zeros((3, 1)), sigma=[1, 1], steps=1, init=init) |
103 |
| - assert tuple(grw.owner.inputs[-2].shape.eval()) == (3, 2) |
| 92 | + grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=1, init=init, shape=(5, 1)) |
| 93 | + assert tuple(grw.owner.inputs[-2].shape.eval()) == (5,) |
104 | 94 |
|
| 95 | + grw = pm.GaussianRandomWalk.dist(mu=[0, 0], sigma=1, steps=1, init=init) |
| 96 | + assert tuple(grw.owner.inputs[-2].shape.eval()) == (2,) |
105 | 97 |
|
106 |
| -def test_shape_ellipsis(): |
107 |
| - grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=5, init=pm.Normal.dist(), shape=(3, ...)) |
108 |
| - assert tuple(grw.shape.eval()) == (3, 6) |
109 |
| - assert tuple(grw.owner.inputs[-2].shape.eval()) == (3,) |
| 98 | + grw = pm.GaussianRandomWalk.dist(mu=0, sigma=[1, 1], steps=1, init=init) |
| 99 | + assert tuple(grw.owner.inputs[-2].shape.eval()) == (2,) |
110 | 100 |
|
| 101 | + grw = pm.GaussianRandomWalk.dist(mu=np.zeros((3, 1)), sigma=[1, 1], steps=1, init=init) |
| 102 | + assert tuple(grw.owner.inputs[-2].shape.eval()) == (3, 2) |
111 | 103 |
|
112 |
| -def test_gaussianrandomwalk_broadcasted_by_init_dist(): |
113 |
| - grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=4, init=pm.Normal.dist(size=(2, 3))) |
114 |
| - assert tuple(grw.shape.eval()) == (2, 3, 5) |
115 |
| - assert grw.eval().shape == (2, 3, 5) |
| 104 | + def test_shape_ellipsis(self): |
| 105 | + grw = pm.GaussianRandomWalk.dist( |
| 106 | + mu=0, sigma=1, steps=5, init=pm.Normal.dist(), shape=(3, ...) |
| 107 | + ) |
| 108 | + assert tuple(grw.shape.eval()) == (3, 6) |
| 109 | + assert tuple(grw.owner.inputs[-2].shape.eval()) == (3,) |
116 | 110 |
|
| 111 | + def test_gaussianrandomwalk_broadcasted_by_init_dist(self): |
| 112 | + grw = pm.GaussianRandomWalk.dist(mu=0, sigma=1, steps=4, init=pm.Normal.dist(size=(2, 3))) |
| 113 | + assert tuple(grw.shape.eval()) == (2, 3, 5) |
| 114 | + assert grw.eval().shape == (2, 3, 5) |
117 | 115 |
|
118 |
| -@pytest.mark.parametrize( |
119 |
| - "init", |
120 |
| - [ |
121 |
| - pm.HalfNormal.dist(sigma=2), |
122 |
| - pm.StudentT.dist(nu=4, mu=1, sigma=0.5), |
123 |
| - ], |
124 |
| -) |
125 |
| -def test_gaussian_random_walk_init_dist_logp(init): |
126 |
| - grw = pm.GaussianRandomWalk.dist(init=init, steps=1) |
127 |
| - assert np.isclose( |
128 |
| - pm.logp(grw, [0, 0]).eval(), |
129 |
| - pm.logp(init, 0).eval() + scipy.stats.norm.logpdf(0), |
| 116 | + @pytest.mark.parametrize( |
| 117 | + "init", |
| 118 | + [ |
| 119 | + pm.HalfNormal.dist(sigma=2), |
| 120 | + pm.StudentT.dist(nu=4, mu=1, sigma=0.5), |
| 121 | + ], |
130 | 122 | )
|
| 123 | + def test_gaussian_random_walk_init_dist_logp(self, init): |
| 124 | + grw = pm.GaussianRandomWalk.dist(init=init, steps=1) |
| 125 | + assert np.isclose( |
| 126 | + pm.logp(grw, [0, 0]).eval(), |
| 127 | + pm.logp(init, 0).eval() + scipy.stats.norm.logpdf(0), |
| 128 | + ) |
131 | 129 |
|
132 | 130 |
|
133 | 131 | @pytest.mark.xfail(reason="Timeseries not refactored")
|
|
0 commit comments