|
| 1 | +import pymc3 as pm |
| 2 | +import numpy as np |
| 3 | +import theano |
| 4 | +import theano.tensor as T |
| 5 | +import scipy.stats |
| 6 | +import matplotlib.pyplot as plt |
| 7 | + |
| 8 | +# Covariance matrix we want to recover |
| 9 | +covariance = np.matrix([[2, .5, -.5], |
| 10 | + [.5, 1., 0.], |
| 11 | + [-.5, 0., 0.5]]) |
| 12 | + |
| 13 | +prec = np.linalg.inv(covariance) |
| 14 | + |
| 15 | +mean = [.5, 1, .2] |
| 16 | +data = scipy.stats.multivariate_normal(mean, covariance).rvs(5000) |
| 17 | + |
| 18 | +plt.scatter(data[:, 0], data[:, 1]) |
| 19 | + |
| 20 | +with pm.Model() as model: |
| 21 | + S = np.eye(3) |
| 22 | + nu = 5 |
| 23 | + mu = pm.Normal('mu', mu=0, sd=1, shape=3) |
| 24 | + |
| 25 | + # Use the transformed Wishart distribution |
| 26 | + # Under the hood this will do a Cholesky decomposition |
| 27 | + # of S and add two RVs to the sampler: c and z |
| 28 | + prec = pm.WishartBartlett('prec', S, nu) |
| 29 | + |
| 30 | + # To be able to compare it to truth, convert precision to covariance |
| 31 | + cov = pm.Deterministic('cov', T.nlinalg.matrix_inverse(prec)) |
| 32 | + |
| 33 | + lp = pm.MvNormal('likelihood', mu=mu, tau=prec, observed=data) |
| 34 | + |
| 35 | + start = pm.find_MAP() |
| 36 | + step = pm.NUTS(scaling=start) |
| 37 | + trace = pm.sample(500, step) |
| 38 | + |
| 39 | +pm.traceplot(trace[100:]); |
0 commit comments