@@ -775,7 +775,7 @@ def WishartBartlett(name, S, nu, is_cholesky=False, return_cholesky=False, testv
775
775
-----
776
776
This is not a standard Distribution class but follows a similar
777
777
interface. Besides the Wishart distribution, it will add RVs
778
- c and z to your model which make up the matrix.
778
+ name_c and name_z to your model which make up the matrix.
779
779
780
780
This distribution is usually a bad idea to use as a prior for multivariate
781
781
normal. You should instead use LKJCholeskyCov or LKJCorr.
@@ -797,11 +797,11 @@ def WishartBartlett(name, S, nu, is_cholesky=False, return_cholesky=False, testv
797
797
diag_testval = None
798
798
tril_testval = None
799
799
800
- c = tt .sqrt (ChiSquared ('c' , nu - np .arange (2 , 2 + n_diag ), shape = n_diag ,
800
+ c = tt .sqrt (ChiSquared ('%s_c' % name , nu - np .arange (2 , 2 + n_diag ), shape = n_diag ,
801
801
testval = diag_testval ))
802
- pm ._log .info ('Added new variable c to model diagonal of Wishart.' )
803
- z = Normal ('z' , 0. , 1. , shape = n_tril , testval = tril_testval )
804
- pm ._log .info ('Added new variable z to model off-diagonals of Wishart.' )
802
+ pm ._log .info ('Added new variable %s_c to model diagonal of Wishart.' % name )
803
+ z = Normal ('%s_z' % name , 0. , 1. , shape = n_tril , testval = tril_testval )
804
+ pm ._log .info ('Added new variable %s_z to model off-diagonals of Wishart.' % name )
805
805
# Construct A matrix
806
806
A = tt .zeros (S .shape , dtype = np .float32 )
807
807
A = tt .set_subtensor (A [diag_idx ], c )
0 commit comments