Skip to content

Commit aaaa00f

Browse files
committed
DOC Fix headings of hierarchical binomial example.
1 parent 83d0af5 commit aaaa00f

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

docs/source/notebooks/GLM-hierarchical-binominal-model.ipynb

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@
6565
"cell_type": "markdown",
6666
"metadata": {},
6767
"source": [
68-
"# A Directly Computed Solution\n",
68+
"## A Directly Computed Solution\n",
6969
"\n",
7070
"Our joint posterior distribution is\n",
7171
"\n",
@@ -263,7 +263,7 @@
263263
"cell_type": "markdown",
264264
"metadata": {},
265265
"source": [
266-
"# Computing the Posterior using PyMC3\n",
266+
"## Computing the Posterior using PyMC3\n",
267267
"\n",
268268
"Computing the marginal posterior directly is a lot of work, and is not always possible for sufficiently complex models. \n",
269269
"\n",
@@ -415,7 +415,7 @@
415415
"cell_type": "markdown",
416416
"metadata": {},
417417
"source": [
418-
"# Conclusion\n",
418+
"## Conclusion\n",
419419
"\n",
420420
"Analytically calculating statistics for posterior distributions is difficult if not impossible for some models. Pymc3 provides an easy way drawing samples from your model's posterior with only a few lines of code. Here, we used pymc3 to obtain estimates of the posterior mean for the rat tumor example in chapter 5 of BDA3. The estimates obtained from pymc3 are encouragingly close to the estimates obtained from the analytical posterior density."
421421
]
@@ -424,7 +424,7 @@
424424
"cell_type": "markdown",
425425
"metadata": {},
426426
"source": [
427-
"# References\n",
427+
"## References\n",
428428
"\n",
429429
"1. Gelman, Andrew, et al. *Bayesian Data Analysis*. CRC Press, 2013."
430430
]

0 commit comments

Comments
 (0)