@@ -971,12 +971,12 @@ class HyperGeometric(Discrete):
971
971
972
972
Parameters
973
973
----------
974
- N : integer
975
- Total size of the population
976
- k : integer
977
- Number of successful individuals in the population
978
- n : integer
979
- Number of samples drawn from the population
974
+ N : tensor_like of integer
975
+ Total size of the population (N > 0)
976
+ k : tensor_like of integer
977
+ Number of successful individuals in the population (0 <= k <= N)
978
+ n : tensor_like of integer
979
+ Number of samples drawn from the population (0 <= n <= N)
980
980
"""
981
981
982
982
rv_op = hypergeometric
@@ -1004,6 +1004,10 @@ def logp(value, good, bad, n):
1004
1004
value : numeric
1005
1005
Value(s) for which log-probability is calculated. If the log probabilities for multiple
1006
1006
values are desired the values must be provided in a numpy array or Aesara tensor
1007
+ good : integer, array_like or TensorVariable
1008
+ Number of successful individuals in the population. Alias for parameter :math:`k`.
1009
+ bad : integer, array_like or TensorVariable
1010
+ Number of unsuccessful individuals in the population. Alias for :math:`N-k`.
1007
1011
1008
1012
Returns
1009
1013
-------
@@ -1042,8 +1046,14 @@ def logcdf(value, good, bad, n):
1042
1046
1043
1047
Parameters
1044
1048
----------
1045
- value: numeric
1049
+ value : numeric
1046
1050
Value for which log CDF is calculated.
1051
+ good : integer
1052
+ Number of successful individuals in the population. Alias for parameter :math:`k`.
1053
+ bad : integer
1054
+ Number of unsuccessful individuals in the population. Alias for :math:`N-k`.
1055
+ n : integer
1056
+ Number of samples drawn from the population (0 <= n <= N)
1047
1057
1048
1058
Returns
1049
1059
-------
0 commit comments