Skip to content

Commit 9a3d6e8

Browse files
committed
revert href change
1 parent f55ad70 commit 9a3d6e8

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

docs/source/index.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -80,31 +80,31 @@
8080
<h2 class="ui dividing header">In-Depth Guides</h2>
8181
<div class="ui four stackable cards">
8282

83-
<a class="ui link card" href="Probability_Distributions.html">
83+
<a class="ui link card" href="/Probability_Distributions.html">
8484
<div class="content">
8585
<div class="header">Probability Distributions</div>
8686
<div class="description">PyMC3 includes a comprehensive set of pre-defined statistical distributions that can be used as model building blocks.
8787
</div>
8888
</div>
8989
</a>
9090

91-
<a class="ui link card" href="Gaussian_Processes.html">
91+
<a class="ui link card" href="/Gaussian_Processes.html">
9292
<div class="content">
9393
<div class="header">Gaussian Processes</div>
9494
<div class="description">Sometimes an unknown parameter or variable in a model is not a scalar value or a fixed-length vector, but a function. A Gaussian process (GP) can be used as a prior probability distribution whose support is over the space of continuous functions. PyMC3 provides rich support for defining and using GPs.
9595
</div>
9696
</div>
9797
</a>
9898

99-
<a class="ui link card" href="pymc-examples/notebooks/variational_api_quickstart.html">
99+
<a class="ui link card" href="/pymc-examples/notebooks/variational_api_quickstart.html">
100100
<div class="content">
101101
<div class="header">Variational Inference</div>
102102
<div class="description">Variational inference saves computational cost by turning a problem of integration into one of optimization. PyMC3's variational API supports a number of cutting edge algorithms, as well as minibatch for scaling to large datasets.
103103
</div>
104104
</div>
105105
</a>
106106

107-
<a class="ui link card" href="PyMC3_and_Theano.html">
107+
<a class="ui link card" href="/PyMC3_and_Theano.html">
108108
<div class="content">
109109
<div class="header">PyMC3 and Theano</div>
110110
<div class="description">Theano is the deep-learning library PyMC3 uses to construct probability distributions and then access the gradient in order to implement cutting edge inference algorithms. More advanced models may be built by understanding this layer.

0 commit comments

Comments
 (0)