Skip to content

Commit 7be9a19

Browse files
mariyaybaloctavodia
authored andcommitted
docstring update OrderedProbit, ZeroInflatedBinomial, ZeroInflatedNegativeBinomial as in #5459
1 parent b94b8b6 commit 7be9a19

File tree

1 file changed

+13
-12
lines changed

1 file changed

+13
-12
lines changed

pymc/distributions/discrete.py

Lines changed: 13 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1560,11 +1560,11 @@ class ZeroInflatedBinomial:
15601560
15611561
Parameters
15621562
----------
1563-
psi: float
1563+
psi : tensor_like of float
15641564
Expected proportion of Binomial variates (0 < psi < 1)
1565-
n: int
1565+
n : tensor_like of int
15661566
Number of Bernoulli trials (n >= 0).
1567-
p: float
1567+
p : tensor_like of float
15681568
Probability of success in each trial (0 < p < 1).
15691569
15701570
"""
@@ -1650,15 +1650,15 @@ def ZeroInfNegBinom(a, m, psi, x):
16501650
16511651
Parameters
16521652
----------
1653-
psi: float
1653+
psi : tensor_like of float
16541654
Expected proportion of NegativeBinomial variates (0 < psi < 1)
1655-
mu: float
1655+
mu : tensor_like of float
16561656
Poission distribution parameter (mu > 0).
1657-
alpha: float
1657+
alpha : tensor_like of float
16581658
Gamma distribution parameter (alpha > 0).
1659-
p: float
1659+
p : tensor_like of float
16601660
Alternative probability of success in each trial (0 < p < 1).
1661-
n: float
1661+
n : tensor_like of float
16621662
Alternative number of target success trials (n > 0)
16631663
"""
16641664

@@ -1846,18 +1846,19 @@ class OrderedProbit:
18461846
18471847
Parameters
18481848
----------
1849-
eta: float
1849+
eta : tensor_like of float
18501850
The predictor.
1851-
cutpoints: array
1851+
cutpoints : tensor_like array of floats
18521852
The length K - 1 array of cutpoints which break :math:`\eta` into
18531853
ranges. Do not explicitly set the first and last elements of
18541854
:math:`c` to negative and positive infinity.
1855-
sigma: float, default 1.0
1855+
sigma : tensor_like of float, default 1.0
18561856
Standard deviation of the probit function.
1857-
compute_p: boolean, default True
1857+
compute_p : boolean, default True
18581858
Whether to compute and store in the trace the inferred probabilities of each categories,
18591859
based on the cutpoints' values. Defaults to True.
18601860
Might be useful to disable it if memory usage is of interest.
1861+
18611862
Example
18621863
--------
18631864
.. code:: python

0 commit comments

Comments
 (0)