@@ -948,6 +948,7 @@ def test_beta(self):
948
948
Unit ,
949
949
{"alpha" : Rplus , "beta" : Rplus },
950
950
lambda value , alpha , beta : sp .beta .logcdf (value , alpha , beta ),
951
+ n_samples = 10 ,
951
952
)
952
953
953
954
def test_kumaraswamy (self ):
@@ -1052,17 +1053,20 @@ def scipy_mu_alpha_logcdf(value, mu, alpha):
1052
1053
Nat ,
1053
1054
{"mu" : Rplus , "alpha" : Rplus },
1054
1055
scipy_mu_alpha_logcdf ,
1056
+ n_samples = 5 ,
1055
1057
)
1056
1058
self .check_logcdf (
1057
1059
NegativeBinomial ,
1058
1060
Nat ,
1059
1061
{"p" : Unit , "n" : Rplus },
1060
1062
lambda value , p , n : sp .nbinom .logcdf (value , n , p ),
1063
+ n_samples = 5 ,
1061
1064
)
1062
1065
self .check_selfconsistency_discrete_logcdf (
1063
1066
NegativeBinomial ,
1064
1067
Nat ,
1065
1068
{"mu" : Rplus , "alpha" : Rplus },
1069
+ n_samples = 10 ,
1066
1070
)
1067
1071
1068
1072
@pytest .mark .parametrize (
@@ -1282,11 +1286,13 @@ def test_binomial(self):
1282
1286
Nat ,
1283
1287
{"n" : NatSmall , "p" : Unit },
1284
1288
lambda value , n , p : sp .binom .logcdf (value , n , p ),
1289
+ n_samples = 10 ,
1285
1290
)
1286
1291
self .check_selfconsistency_discrete_logcdf (
1287
1292
Binomial ,
1288
1293
Nat ,
1289
1294
{"n" : NatSmall , "p" : Unit },
1295
+ n_samples = 10 ,
1290
1296
)
1291
1297
1292
1298
# Too lazy to propagate decimal parameter through the whole chain of deps
@@ -1423,6 +1429,7 @@ def test_zeroinflatednegativebinomial(self):
1423
1429
ZeroInflatedNegativeBinomial ,
1424
1430
Nat ,
1425
1431
{"mu" : Rplusbig , "alpha" : Rplusbig , "psi" : Unit },
1432
+ n_samples = 10 ,
1426
1433
)
1427
1434
1428
1435
# Too lazy to propagate decimal parameter through the whole chain of deps
@@ -1437,6 +1444,7 @@ def test_zeroinflatedbinomial(self):
1437
1444
ZeroInflatedBinomial ,
1438
1445
Nat ,
1439
1446
{"n" : NatSmall , "p" : Unit , "psi" : Unit },
1447
+ n_samples = 10 ,
1440
1448
)
1441
1449
1442
1450
@pytest .mark .parametrize ("n" , [1 , 2 , 3 ])
0 commit comments