Skip to content

Commit 52f5201

Browse files
committed
Fix some references and minor changes
1 parent 57634f7 commit 52f5201

File tree

1 file changed

+9
-11
lines changed

1 file changed

+9
-11
lines changed

docs/source/learn/core_notebooks/pymc_aesara.ipynb

Lines changed: 9 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -1003,9 +1003,7 @@
10031003
}
10041004
],
10051005
"source": [
1006-
"rng = np.random.default_rng()\n",
1007-
"\n",
1008-
"a = rng.normal(loc=0, scale=1, size=1_000)\n",
1006+
"a = np.random.normal(loc=0, scale=1, size=1_000)\n",
10091007
"\n",
10101008
"fig, ax = plt.subplots(figsize=(8, 6))\n",
10111009
"ax.hist(a, color=\"C0\", bins=15)\n",
@@ -1025,7 +1023,7 @@
10251023
},
10261024
{
10271025
"cell_type": "code",
1028-
"execution_count": 24,
1026+
"execution_count": 57,
10291027
"metadata": {
10301028
"pycharm": {
10311029
"name": "#%%\n"
@@ -1035,17 +1033,17 @@
10351033
{
10361034
"data": {
10371035
"text/plain": [
1038-
"aesara.tensor.var.TensorVariable"
1036+
"TensorType(float64, ())"
10391037
]
10401038
},
1041-
"execution_count": 24,
1039+
"execution_count": 57,
10421040
"metadata": {},
10431041
"output_type": "execute_result"
10441042
}
10451043
],
10461044
"source": [
10471045
"y = at.random.normal(loc=0, scale=1, name=\"y\")\n",
1048-
"type(y)"
1046+
"y.type"
10491047
]
10501048
},
10511049
{
@@ -1436,7 +1434,7 @@
14361434
}
14371435
},
14381436
"source": [
1439-
"We are just creating random variables like we saw before, but now registering them in a PyMC model. To extract the list of random variables we can simply do:"
1437+
"We are just creating random variables like we saw before, but now registering them in a `pymc` model. To extract the list of random variables we can simply do:"
14401438
]
14411439
},
14421440
{
@@ -1673,7 +1671,7 @@
16731671
}
16741672
},
16751673
"source": [
1676-
"PyMC is able to convert `RandomVariable`s to their respective probability functions. One simple way is to use {func}`~pm.distributions.logprob.logp`, which takes as first input a RandomVariable, and as second input the value at which the logp is evaluated (we will discuss this in more detail later)."
1674+
"`pymc` is able to convert `RandomVariable`s to their respective probability functions. One simple way is to use {func}`~pymc.distributions.logprob.logp`, which takes as first input a RandomVariable, and as second input the value at which the logp is evaluated (we will discuss this in more detail later)."
16771675
]
16781676
},
16791677
{
@@ -1765,7 +1763,7 @@
17651763
},
17661764
"source": [
17671765
":::{tip}\n",
1768-
"There is also a handy PyMC function to compute the log cumulative probability of a random variable {func}`~pm.distributions.logprob.logcdf`."
1766+
"There is also a handy `pymc` function to compute the log cumulative probability of a random variable {func}`~pymc.distributions.logprob.logcdf`."
17691767
]
17701768
},
17711769
{
@@ -1846,7 +1844,7 @@
18461844
}
18471845
},
18481846
"source": [
1849-
"PyMC Models provide some helpful routines to facilitating the conversion of `RandomVariable`s to probability functions. {meth}`~pymc.Model.logpt`, for instance can be used to extract the joint probability of all variables in the model:"
1847+
"`pymc` models provide some helpful routines to facilitating the conversion of `RandomVariable`s to probability functions. {meth}`~pymc.Model.logpt`, for instance can be used to extract the joint probability of all variables in the model:"
18501848
]
18511849
},
18521850
{

0 commit comments

Comments
 (0)