@@ -691,7 +691,7 @@ def __add__(self, other):
691
691
new_gp .approx = self .approx
692
692
return new_gp
693
693
694
- def _build_marginal_likelihood_logp (self , y , X , Xu , sigma , jitter ):
694
+ def _build_marginal_likelihood_loglik (self , y , X , Xu , sigma , jitter ):
695
695
sigma2 = at .square (sigma )
696
696
Kuu = self .cov_func (Xu )
697
697
Kuf = self .cov_func (Xu , X )
@@ -720,9 +720,7 @@ def _build_marginal_likelihood_logp(self, y, X, Xu, sigma, jitter):
720
720
quadratic = 0.5 * (at .dot (r , r_l ) - at .dot (c , c ))
721
721
return - 1.0 * (constant + logdet + quadratic + trace )
722
722
723
- def marginal_likelihood (
724
- self , name , X , Xu , y , noise = None , is_observed = True , jitter = JITTER_DEFAULT , ** kwargs
725
- ):
723
+ def marginal_likelihood (self , name , X , Xu , y , noise = None , jitter = JITTER_DEFAULT , ** kwargs ):
726
724
R"""
727
725
Returns the approximate marginal likelihood distribution, given the input
728
726
locations `X`, inducing point locations `Xu`, data `y`, and white noise
@@ -759,8 +757,8 @@ def marginal_likelihood(
759
757
else :
760
758
self .sigma = noise
761
759
762
- approx_logp = self ._build_marginal_likelihood_logp (y , X , Xu , noise , JITTER_DEFAULT )
763
- pm .Potential (f"marginalapprox_logp_ { name } " , approx_logp )
760
+ approx_loglik = self ._build_marginal_likelihood_loglik (y , X , Xu , noise , jitter )
761
+ pm .Potential (f"marginalapprox_loglik_ { name } " , approx_loglik , ** kwargs )
764
762
765
763
def _build_conditional (
766
764
self , Xnew , pred_noise , diag , X , Xu , y , sigma , cov_total , mean_total , jitter
0 commit comments