@@ -199,13 +199,13 @@ class MvNormal(Continuous):
199
199
200
200
Parameters
201
201
----------
202
- mu: array
202
+ mu : tensor_like of float
203
203
Vector of means.
204
- cov: array
204
+ cov : tensor_like of float, optional
205
205
Covariance matrix. Exactly one of cov, tau, or chol is needed.
206
- tau: array
206
+ tau : tensor_like of float, optional
207
207
Precision matrix. Exactly one of cov, tau, or chol is needed.
208
- chol: array
208
+ chol : tensor_like of float, optional
209
209
Cholesky decomposition of covariance matrix. Exactly one of cov,
210
210
tau, or chol is needed.
211
211
lower: bool, default=True
@@ -353,19 +353,19 @@ class MvStudentT(Continuous):
353
353
354
354
Parameters
355
355
----------
356
- nu: float
356
+ nu : tensor_like of float
357
357
Degrees of freedom, should be a positive scalar.
358
- Sigma: matrix
358
+ Sigma : tensor_like of float, optional
359
359
Covariance matrix. Use `cov` in new code.
360
- mu: array
360
+ mu : tensor_like of float, optional
361
361
Vector of means.
362
- cov: matrix
362
+ cov : tensor_like of float, optional
363
363
The covariance matrix.
364
- tau: matrix
364
+ tau : tensor_like of float, optional
365
365
The precision matrix.
366
- chol: matrix
366
+ chol : tensor_like of float, optional
367
367
The cholesky factor of the covariance matrix.
368
- lower: bool, default=True
368
+ lower : bool, default=True
369
369
Whether the cholesky fatcor is given as a lower triangular matrix.
370
370
"""
371
371
rv_op = mv_studentt
@@ -439,7 +439,7 @@ class Dirichlet(SimplexContinuous):
439
439
440
440
Parameters
441
441
----------
442
- a: float array
442
+ a: tensor_like of float
443
443
Concentration parameters (a > 0). The number of categories is given by the
444
444
length of the last axis.
445
445
"""
@@ -515,9 +515,9 @@ class Multinomial(Discrete):
515
515
516
516
Parameters
517
517
----------
518
- n: int
518
+ n : tensor_like of int
519
519
Total counts in each replicate (n > 0).
520
- p: float array
520
+ p : tensor_like of float
521
521
Probability of each one of the different outcomes (0 <= p <= 1). The number of
522
522
categories is given by the length of the last axis. Elements are expected to sum
523
523
to 1 along the last axis, and they will be automatically rescaled otherwise.
@@ -644,10 +644,10 @@ class DirichletMultinomial(Discrete):
644
644
645
645
Parameters
646
646
----------
647
- n : int
647
+ n : tensor_like of int
648
648
Total counts in each replicate (n > 0).
649
649
650
- a : float array
650
+ a : tensor_like of float
651
651
Dirichlet concentration parameters (a > 0). The number of categories is given by
652
652
the length of the last axis.
653
653
"""
@@ -757,15 +757,15 @@ class OrderedMultinomial:
757
757
758
758
Parameters
759
759
----------
760
- eta: float
760
+ eta : tensor_like of float
761
761
The predictor.
762
- cutpoints: array
762
+ cutpoints : tensor_like of float
763
763
The length K - 1 array of cutpoints which break :math:`\eta` into
764
764
ranges. Do not explicitly set the first and last elements of
765
765
:math:`c` to negative and positive infinity.
766
- n: int
766
+ n : tensor_like of int
767
767
The total number of multinomial trials.
768
- compute_p: boolean, default True
768
+ compute_p : boolean, default= True
769
769
Whether to compute and store in the trace the inferred probabilities of each
770
770
categories,
771
771
based on the cutpoints' values. Defaults to True.
@@ -916,9 +916,9 @@ class Wishart(Continuous):
916
916
917
917
Parameters
918
918
----------
919
- nu: int
919
+ nu : tensor_like of int
920
920
Degrees of freedom, > 0.
921
- V: array
921
+ V : array_like
922
922
p x p positive definite matrix.
923
923
924
924
Notes
@@ -1007,18 +1007,18 @@ def WishartBartlett(name, S, nu, is_cholesky=False, return_cholesky=False, initv
1007
1007
1008
1008
Parameters
1009
1009
----------
1010
- S: ndarray
1010
+ S : ndarray
1011
1011
p x p positive definite matrix
1012
1012
Or:
1013
1013
p x p lower-triangular matrix that is the Cholesky factor
1014
1014
of the covariance matrix.
1015
- nu: int
1015
+ nu : tensor_like of int
1016
1016
Degrees of freedom, > dim(S).
1017
- is_cholesky: bool ( default=False)
1017
+ is_cholesky : bool, default=False
1018
1018
Input matrix S is already Cholesky decomposed as S.T * S
1019
- return_cholesky: bool ( default=False)
1019
+ return_cholesky : bool, default=False
1020
1020
Only return the Cholesky decomposed matrix.
1021
- initval: ndarray
1021
+ initval : ndarray
1022
1022
p x p positive definite matrix used to initialize
1023
1023
1024
1024
Notes
0 commit comments