Skip to content

Commit 38b0b6b

Browse files
committed
updated docstrings of the first 7 distributions classes
1 parent 2583b7f commit 38b0b6b

File tree

1 file changed

+27
-27
lines changed

1 file changed

+27
-27
lines changed

pymc/distributions/multivariate.py

Lines changed: 27 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -199,13 +199,13 @@ class MvNormal(Continuous):
199199
200200
Parameters
201201
----------
202-
mu: array
202+
mu : tensor_like of float
203203
Vector of means.
204-
cov: array
204+
cov : tensor_like of float, optional
205205
Covariance matrix. Exactly one of cov, tau, or chol is needed.
206-
tau: array
206+
tau : tensor_like of float, optional
207207
Precision matrix. Exactly one of cov, tau, or chol is needed.
208-
chol: array
208+
chol : tensor_like of float, optional
209209
Cholesky decomposition of covariance matrix. Exactly one of cov,
210210
tau, or chol is needed.
211211
lower: bool, default=True
@@ -353,19 +353,19 @@ class MvStudentT(Continuous):
353353
354354
Parameters
355355
----------
356-
nu: float
356+
nu : tensor_like of float
357357
Degrees of freedom, should be a positive scalar.
358-
Sigma: matrix
358+
Sigma : tensor_like of float, optional
359359
Covariance matrix. Use `cov` in new code.
360-
mu: array
360+
mu : tensor_like of float, optional
361361
Vector of means.
362-
cov: matrix
362+
cov : tensor_like of float, optional
363363
The covariance matrix.
364-
tau: matrix
364+
tau : tensor_like of float, optional
365365
The precision matrix.
366-
chol: matrix
366+
chol : tensor_like of float, optional
367367
The cholesky factor of the covariance matrix.
368-
lower: bool, default=True
368+
lower : bool, default=True
369369
Whether the cholesky fatcor is given as a lower triangular matrix.
370370
"""
371371
rv_op = mv_studentt
@@ -439,7 +439,7 @@ class Dirichlet(SimplexContinuous):
439439
440440
Parameters
441441
----------
442-
a: float array
442+
a: tensor_like of float
443443
Concentration parameters (a > 0). The number of categories is given by the
444444
length of the last axis.
445445
"""
@@ -515,9 +515,9 @@ class Multinomial(Discrete):
515515
516516
Parameters
517517
----------
518-
n: int
518+
n : tensor_like of int
519519
Total counts in each replicate (n > 0).
520-
p: float array
520+
p : tensor_like of float
521521
Probability of each one of the different outcomes (0 <= p <= 1). The number of
522522
categories is given by the length of the last axis. Elements are expected to sum
523523
to 1 along the last axis, and they will be automatically rescaled otherwise.
@@ -644,10 +644,10 @@ class DirichletMultinomial(Discrete):
644644
645645
Parameters
646646
----------
647-
n : int
647+
n : tensor_like of int
648648
Total counts in each replicate (n > 0).
649649
650-
a : float array
650+
a : tensor_like of float
651651
Dirichlet concentration parameters (a > 0). The number of categories is given by
652652
the length of the last axis.
653653
"""
@@ -757,15 +757,15 @@ class OrderedMultinomial:
757757
758758
Parameters
759759
----------
760-
eta: float
760+
eta : tensor_like of float
761761
The predictor.
762-
cutpoints: array
762+
cutpoints : tensor_like of float
763763
The length K - 1 array of cutpoints which break :math:`\eta` into
764764
ranges. Do not explicitly set the first and last elements of
765765
:math:`c` to negative and positive infinity.
766-
n: int
766+
n : tensor_like of int
767767
The total number of multinomial trials.
768-
compute_p: boolean, default True
768+
compute_p : boolean, default=True
769769
Whether to compute and store in the trace the inferred probabilities of each
770770
categories,
771771
based on the cutpoints' values. Defaults to True.
@@ -916,9 +916,9 @@ class Wishart(Continuous):
916916
917917
Parameters
918918
----------
919-
nu: int
919+
nu : tensor_like of int
920920
Degrees of freedom, > 0.
921-
V: array
921+
V : array_like
922922
p x p positive definite matrix.
923923
924924
Notes
@@ -1007,18 +1007,18 @@ def WishartBartlett(name, S, nu, is_cholesky=False, return_cholesky=False, initv
10071007
10081008
Parameters
10091009
----------
1010-
S: ndarray
1010+
S : ndarray
10111011
p x p positive definite matrix
10121012
Or:
10131013
p x p lower-triangular matrix that is the Cholesky factor
10141014
of the covariance matrix.
1015-
nu: int
1015+
nu : tensor_like of int
10161016
Degrees of freedom, > dim(S).
1017-
is_cholesky: bool (default=False)
1017+
is_cholesky : bool, default=False
10181018
Input matrix S is already Cholesky decomposed as S.T * S
1019-
return_cholesky: bool (default=False)
1019+
return_cholesky : bool, default=False
10201020
Only return the Cholesky decomposed matrix.
1021-
initval: ndarray
1021+
initval : ndarray
10221022
p x p positive definite matrix used to initialize
10231023
10241024
Notes

0 commit comments

Comments
 (0)