@@ -361,25 +361,25 @@ class AR(SymbolicDistribution):
361
361
362
362
Parameters
363
363
----------
364
- rho: tensor_like of float
364
+ rho : tensor_like of float
365
365
Tensor of autoregressive coefficients. The n-th entry in the last dimension is
366
366
the coefficient for the n-th lag.
367
- sigma: tensor_like of float, optional
368
- Standard deviation of innovation (sigma > 0). Defaults to 1. Only required if
367
+ sigma : tensor_like of float, default 1
368
+ Standard deviation of innovation (sigma > 0). Only required if
369
369
tau is not specified.
370
- tau: tensor_like of float
370
+ tau : tensor_like of float, optional
371
371
Precision of innovation (tau > 0).
372
- constant: bool, optional
372
+ constant : bool, default False
373
373
Whether the first element of rho should be used as a constant term in the AR
374
- process. Defaults to False
375
- init_dist: unnamed distribution
376
- Scalar or vector distribution for initial values. Distribution should be
377
- created via the `.dist()` API, and have shape (*shape[:-1], ar_order). If not,
378
- it will be automatically resized.
374
+ process.
375
+ init_dist : unnamed distribution
376
+ Scalar or vector distribution for initial values. Unnamed refers to distributions
377
+ created with the `` .dist()`` API. Distributions should have shape (*shape[:-1], ar_order).
378
+ If not, it will be automatically resized.
379
379
380
380
.. warning:: init_dist will be cloned, rendering it independent of the one passed as input.
381
381
382
- ar_order: int, optional
382
+ ar_order : int, optional
383
383
Order of the AR process. Inferred from length of the last dimension of rho, if
384
384
possible. ar_order = rho.shape[-1] if constant else rho.shape[-1] - 1
385
385
steps : int, optional
0 commit comments