Skip to content

Commit 2575662

Browse files
committed
resolving @OriolAbril review with @pibieta
1 parent 8c7f03d commit 2575662

File tree

2 files changed

+9
-8
lines changed

2 files changed

+9
-8
lines changed

docs/source/conf.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@
6464
# fmt: off
6565
numpydoc_xref_ignore = {
6666
"of", "or", "optional", "default", "numeric", "type", "scalar", "1D", "2D", "3D", "nD", "array",
67-
"instance"
67+
"instance", "M", "N"
6868
}
6969
# fmt: on
7070
numpydoc_xref_aliases = {

pymc/distributions/multivariate.py

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1850,7 +1850,7 @@ class KroneckerNormal(Continuous):
18501850
======== ==========================
18511851
Support :math:`x \in \mathbb{R}^N`
18521852
Mean :math:`\mu`
1853-
Variance :math:`K = \bigotimes K_i` + \sigma^2 I_N
1853+
Variance :math:`K = \bigotimes K_i + \sigma^2 I_N`
18541854
======== ==========================
18551855
18561856
Parameters
@@ -1869,7 +1869,7 @@ class KroneckerNormal(Continuous):
18691869
:math:`K_i = Q_i \text{diag}(v_i) Q_i'`. For example::
18701870
18711871
v_i, Q_i = at.nlinalg.eigh(K_i)
1872-
sigma : scalar, variable
1872+
sigma : scalar, optional
18731873
Standard deviation of the Gaussian white noise.
18741874
18751875
Examples
@@ -2103,17 +2103,18 @@ class CAR(Continuous):
21032103
----------
21042104
mu : tensor_like of float
21052105
Real-valued mean vector
2106-
W : ndarray of int
2106+
W : (M, M) tensor_like of int
21072107
Symmetric adjacency matrix of 1s and 0s indicating
2108-
adjacency between elements.
2108+
adjacency between elements. If possible, *W* is converted
2109+
to a sparse matrix, falling back to a dense variable.
2110+
:func:`~aesara.sparse.basic.as_sparse_or_tensor_variable` is
2111+
used for this sparse or tensorvariable conversion.
21092112
alpha : tensor_like of float
21102113
Autoregression parameter taking values between -1 and 1. Values closer to 0 indicate weaker
21112114
correlation and values closer to 1 indicate higher autocorrelation. For most use cases, the
2112-
support of alpha should be restricted to (0, 1)
2115+
support of alpha should be restricted to (0, 1).
21132116
tau : tensor_like of float
21142117
Positive precision variable controlling the scale of the underlying normal variates.
2115-
sparse : bool, default=False
2116-
Determines whether or not sparse computations are used
21172118
21182119
References
21192120
----------

0 commit comments

Comments
 (0)