@@ -1850,7 +1850,7 @@ class KroneckerNormal(Continuous):
1850
1850
======== ==========================
1851
1851
Support :math:`x \in \mathbb{R}^N`
1852
1852
Mean :math:`\mu`
1853
- Variance :math:`K = \bigotimes K_i` + \sigma^2 I_N
1853
+ Variance :math:`K = \bigotimes K_i + \sigma^2 I_N`
1854
1854
======== ==========================
1855
1855
1856
1856
Parameters
@@ -1869,7 +1869,7 @@ class KroneckerNormal(Continuous):
1869
1869
:math:`K_i = Q_i \text{diag}(v_i) Q_i'`. For example::
1870
1870
1871
1871
v_i, Q_i = at.nlinalg.eigh(K_i)
1872
- sigma : scalar, variable
1872
+ sigma : scalar, optional
1873
1873
Standard deviation of the Gaussian white noise.
1874
1874
1875
1875
Examples
@@ -2103,17 +2103,18 @@ class CAR(Continuous):
2103
2103
----------
2104
2104
mu : tensor_like of float
2105
2105
Real-valued mean vector
2106
- W : ndarray of int
2106
+ W : (M, M) tensor_like of int
2107
2107
Symmetric adjacency matrix of 1s and 0s indicating
2108
- adjacency between elements.
2108
+ adjacency between elements. If possible, *W* is converted
2109
+ to a sparse matrix, falling back to a dense variable.
2110
+ :func:`~aesara.sparse.basic.as_sparse_or_tensor_variable` is
2111
+ used for this sparse or tensorvariable conversion.
2109
2112
alpha : tensor_like of float
2110
2113
Autoregression parameter taking values between -1 and 1. Values closer to 0 indicate weaker
2111
2114
correlation and values closer to 1 indicate higher autocorrelation. For most use cases, the
2112
- support of alpha should be restricted to (0, 1)
2115
+ support of alpha should be restricted to (0, 1).
2113
2116
tau : tensor_like of float
2114
2117
Positive precision variable controlling the scale of the underlying normal variates.
2115
- sparse : bool, default=False
2116
- Determines whether or not sparse computations are used
2117
2118
2118
2119
References
2119
2120
----------
0 commit comments